练习31

 
/*************************************************************************************

  31. 甲乙两人从24枚棋子中轮流取子,甲先取,规定每次所取的枚数不能多于上
 一个人所取的枚数,也不可不取。

  (1)甲第一次取多少枚才能保证甲取得最后一枚,当然,他也不能第一次就把
 所有棋子都取走。
  (2)讨论棋子总数N(一定是偶数)从6到30的各种情况。讨论内容包括:

 对各个N,是否存在一个小于N的枚数M,甲第一次取M枚后就能保证甲如果策略
 正确,一定能取到最后一枚棋子。

  分析:
  首先,如果棋子数目是奇数,甲第一次取1个棋子就保证取到最后一个棋子;
  如果是偶数,从小的开始,如果是N=2,显然,甲必然不能取到最后一个,
  如果N=4,也很显然失败,当N=6时,显然因为N=4为败局,那么甲只要拿2个,
  就把败局留给乙,由此可以归纳出一条规律,如果N=2的k(k>=1)次方必然
  是败局。亦即:当N<>2^K的情况,只要甲第一次取走N-[log2(N)],即可保证胜局.

  *************************************************************************************/

#include <iostream.h>

void main()
{
	int N;
	int k = 0;
	int rs = 1;
	bool flag = false;

	cout<<"请输入一个正偶数:";
	cin>>N;
	while(N<0 || N%2==1)
	{
		cout<<"请按要求输入数据!!"<<endl;
		cout<< "请输入一个正偶数:";
		cin>>N;
	}
	while(1)
	{
		rs *= 2;
		if(rs >= N)
		{
			if(rs > N)
			{
				flag = true;
			}
			break;
		}
		k++;
	}
	if(flag)
		cout<<"甲只要第一次拿走"<<N-rs/2<<"个棋子,就可以保证胜局!"<<endl;
	else	cout<<"甲遇到的是败局!"<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值