/*************************************************************************************
31. 甲乙两人从24枚棋子中轮流取子,甲先取,规定每次所取的枚数不能多于上
一个人所取的枚数,也不可不取。
(1)甲第一次取多少枚才能保证甲取得最后一枚,当然,他也不能第一次就把
所有棋子都取走。
(2)讨论棋子总数N(一定是偶数)从6到30的各种情况。讨论内容包括:
对各个N,是否存在一个小于N的枚数M,甲第一次取M枚后就能保证甲如果策略
正确,一定能取到最后一枚棋子。
分析:
首先,如果棋子数目是奇数,甲第一次取1个棋子就保证取到最后一个棋子;
如果是偶数,从小的开始,如果是N=2,显然,甲必然不能取到最后一个,
如果N=4,也很显然失败,当N=6时,显然因为N=4为败局,那么甲只要拿2个,
就把败局留给乙,由此可以归纳出一条规律,如果N=2的k(k>=1)次方必然
是败局。亦即:当N<>2^K的情况,只要甲第一次取走N-[log2(N)],即可保证胜局.
*************************************************************************************/
#include <iostream.h>
void main()
{
int N;
int k = 0;
int rs = 1;
bool flag = false;
cout<<"请输入一个正偶数:";
cin>>N;
while(N<0 || N%2==1)
{
cout<<"请按要求输入数据!!"<<endl;
cout<< "请输入一个正偶数:";
cin>>N;
}
while(1)
{
rs *= 2;
if(rs >= N)
{
if(rs > N)
{
flag = true;
}
break;
}
k++;
}
if(flag)
cout<<"甲只要第一次拿走"<<N-rs/2<<"个棋子,就可以保证胜局!"<<endl;
else cout<<"甲遇到的是败局!"<<endl;
}