Taskonomy: Disentangling Task Transfer Learning是CVPR2018的最佳论文,斯坦福大学Guibas组的文章。
论文地址:http://taskonomy.stanford.edu/taskonomy_CVPR2018.pdf
作者在知乎有一个非常详细的解释文章:https://zhuanlan.zhihu.com/p/38425434
个人笔记:
迁移学习就是在找不同领域之前的相似性和不变形。个人觉得这篇文章主要贡献在于量化了任务之间的关系。
研究问题:
Given limited resource R, task dictionary T, s , t ∈ T { s, t \in T} s,t∈

Taskonomy论文是CVPR2018最佳论文,来自斯坦福大学,探讨了如何量化任务间的迁移学习关系。通过训练特定任务的encoder-decoder模型,构建关联矩阵评估迁移效果,优化资源利用,实验表明在计算机视觉任务中,使用部分资源即可取得良好性能。然而,计算所有任务对的迁移矩阵需要大量计算资源。
最低0.47元/天 解锁文章
4891

被折叠的 条评论
为什么被折叠?



