推荐系统论文阅读:Entire Space Multi-Task Model

文章提出了 Entire Space Multi-Task Model (ESSM),通过预测pCTCVR和pCTR来估计pCVR,解决样本选择偏差问题和数据稀疏问题。模型由两个共享嵌入参数的网络组成,改善了转化率预测的准确性。
摘要由CSDN通过智能技术生成

阿里18年的论文Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate.
code已经开源:代码

摘要:
这篇文章的目的是预测新顾客的转化率,相比于传统方法直接对pCVR建模,作者提出Entire Space Multi- task Model(ESSM)模型,不直接对pCVR建模,而是利用两个任务,预测pCTCVR和预测pCTR的结果来估计pCVR,从而避免了SSB问题。这篇文章创新的地方在于利用了一个链路的顺序关系,impression->click->conversion。

Problem
Input: click through rate(CTR) and conversion through rate(CVR)
Output: for a new user, the probability that he will purchase the item

Challenge

  • Sample selection bias problem (SSB)
    由于训练数据是用户点击的数据,只反映了clicked impression,而建模的空间是整个impression空间,其中clicked impression只占非常少的一部分,所以会导致训练数据采样空间与模型推测空间不一致,即bias问题。
  • Data sparsity problem (DS)
    CVR的数据远远少于前一步CTR的数据,导致CVR是一个非常稀疏的矩阵。

模型

p ( z = 1 , y = 1 ∣ x ) = p ( y = 1 ∣ x ) ⋅ p ( z = 1 ∣ y = 1 , x ) {p(z=1, y=1|x) = p(y=1|x) \cdot p(z=1|y=1,x)} p(z=1,y=1x)=p(y=1x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>