当时有七座桥横跨普勒格尔河及其支流,把河岸、半岛和河心岛连接起来。有趣的桥群和哥尼斯堡城4区的迷人景色吸引了众多的游客。
图1
一天又一天,这7座桥上走过了无数的旅游者。不知从什么时候起,一个有趣的问题在居民中传开了:“一个旅游者在这里逍遥漫步时,能否从某个地方出发,穿过所有的桥各一次后再回到出发点?”
这个饶有兴趣的题目,吸引了许多人。活泼好动的游戏者,在桥上穿梭往来,不厌其烦地试验他们设想的每一条路线。脚力不济的老人,也在悠闲散步的同时,试验他们的方案。这问题甚至还打动了哥尼斯堡的大游戏者们,在课余之时,他们兴趣盎然地探讨各种方案。
可是,把全城人的智慧都加在一起,也没有找出一条合适的路线。哥尼斯堡的“七桥问题”竟成了一道著名的难题。
终于,有一天,在这难题前一筹莫展的哥尼斯堡的大游戏者们想到了一个人,他们决定写信去请教。就这样,这个难题摆到了彼得堡科学院的欧拉教授面前。
欧拉毕竟是数学家,他并没有去重复人们已多次失败了的试验,而是首先产生了一种直觉的猜想:许多人千百次的失败,也许意味着这样的走法根本就不存在。于是欧拉把七桥问题进行了数学的抽象。他是这样思考的:既然问题是要找一条不重复地经过7座桥的路线,而4块陆地无非是桥梁的连接点,那么,不妨把4块陆地看作是4个点,把7座桥画成7条线。七桥问题就简化为能否一笔画出这7条线段和4个交点组成的几何图形的问题了。
图2
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。
走进数学 |
七桥的游戏设计了一个兴趣昂然的游戏,这个游戏蕴涵了一系列的数学问题,可以培养游戏者的数学观念,使游戏者在一个大数学的背景下,走进数学。 (一)突出本质,培养抽象意识,为七桥问题建模。 游戏者对七桥游戏进行数遍探索性的实际操作后,会把地图上一个城市抽象为一个点,把岛和陆地抽象成点,把桥抽象成线(这里的线并不是笔直的,生活中没有完全精确的笔直线)。七桥问题就成为一个数学模型,如图3:
在七桥游戏的实际操作中,可以培养游戏者抓住问题本质的能力,同时也培养了他们的抽象意识。正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。而抽象正是数学及一切理论科学的共同特点,科学抽象是理性思维方法的一种形式,是一项学习活动必不可少的数学思维方法之一。
图4 图5 |
收获明天 |
七桥游戏从历史上的数学问题入手,在大数学的背景下,呈现出一系列的游戏。通过游戏这一平台使游戏者沉醉其中,积极主动地探究数学的奥秘,既获得了丰富的知识,又提高了数学学习的能力。虽然在探索的过程中,可能会多花一些时间,但是俗话说的好:磨刀不误砍柴功,所花时间是值得的。通过游戏进行学习的做法,充分体现了以孩子为主体的教育原则,改变了传统的灌输式学习,培养了他们的思维品质和创新精神。 (一)增强游戏者数学学习的兴趣。 “好玩”是孩子的天性,托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的学习兴趣。”兴趣是人对客观事物产生的一种积极的认知倾向。它是最好的老师,对游戏者的学习具有非常重要的引导作用。七桥游戏就是一个容易令人产生深厚兴趣的游戏。 在七桥游戏中所创设的情景,把游戏者带入一个富有挑战的学习境界,让他们在动脑动手的过程中进行自主创新性学习。我们将游戏者感兴趣的大量素材直接整合到游戏中,非常有助于增强游戏者的学习动机,有助于他们对数学产生浓厚的兴趣,从而愉快地投入到学习活动之中。 (二)孕育游戏者大数学的观念。 大数学的观念就是在数学大背景下的对数学的全面认识与理解,这种观念可以帮助游戏者站在更宏观的角度来认识数学。 七桥游戏伴随动画和音乐,融视听为一体,能更好的吸引游戏者的注意力,以游戏的方式呈现数学问题,使游戏者在一个模拟真实生活的空间中,为游戏者提供了亲身体验和动手操作的机会,在操作中进一步的探究数学知识,突破学习的极限,体会到数学的美。使游戏者实现由书本的数学到真正的大数学的升华。 (三)培养游戏者思维的品质。 七桥游戏不仅帮助游戏者解决了七桥本身的问题,它对于培养游戏者的思维品质也起到了重大的作用。 游戏中由具体的实物到点线的抽象,这种思维方式由具体形象向抽象逻辑的转变,培养了游戏者思维的深刻性。只有在思维深刻性的指导下,人们才能找到正确的方向并得出深刻的结论。思维的深刻性可以说是人最重要的思维品质。 在游戏中,形成的概括和迁移能力,也可以帮助游戏者触类旁通,有助于游戏者提高思维的灵活性,这对思维的转换和数学的学习有着非常重要的意义。另外,经过游戏者的独立思考得出的有价值的规律,也融入了思维的创造性。在游戏规则的指导下,游戏者思维的敏捷性也会得到很大的提高。 (四)提高游戏者学习的能力。 我们教给孩子的是数学的思维,培养的是他们进一步学习数学的能力。在七桥游戏中所培养的游戏者的数学意识会使他们将来的学习如鱼游春水,分外畅快。游戏者不再需要一味的重复练习,他们对于题海战术已经过于厌烦。我们都知道愚公移山的精神在于坚持不懈、艰苦奋斗。精神的确可嘉,但这里面可能暗藏着一个很大的误区――只知道一味地付出努力和汗水,而忽视了思考正确的方法和目标,理想也是难以实现的。试想一下,如果愚公遇上七桥问题时也像他当年移山那样艰苦奋斗呢?结果就可想而知了。 成功需要我们埋头苦干,更需要我们运用智慧。伴随着七桥益智游戏,游戏者将遨游于数学的殿堂,插上智慧的翅膀,轻松快乐地实现自己的理想。 |