基金首发配售比例再创新低

基金首发配售比例再创新低

http://www.sina.com.cn 2007年09月07日 03:02 中国证券网-上海证券报

  ⊙本报记者 王文清

  A股市场的坚定多头可能马上又会找到信心的来源,那就是大盘虽然身处高位,但投资者通过基金间接入市的步伐并没有减退。据华夏基金今日公告,昨日以“比例配售”方式首发的华夏复兴基金最终配售比例为9.711426%。根据本报统计,这一数据低于今年4月10日公开募集的上投摩根内需动力基金11.099172%的配售比例,“中签率”创下了基金采取比例配售以来的历史新低。基金“中签率”再创新低,一方面说明投资者对品牌基金管理公司投资管理能力的追捧,另一方面也意味着A股市场充沛的流动性目前并没有出现消退的迹象。

  具有一年封闭期的创新型基金———华夏复兴基金今日发布了认购申请比例结果公告。该基金于2007年9月5日募集首日顺利完成发售,认购申请金额超过预先设定的50亿元上限。根据《华夏复兴股票型证券投资基金基金份额发售公告》,华夏基金管理有限公司对2007年9月5日认购申请采用“末日比例确认”的原则给予部分确认。经计算的本基金2007年9月5日认购申请确认比例结果为9.711426%。这一数据意味着当日有超过500亿的资金认购华夏复兴基金,但只能有不到10%的资金获得该基金的份额。

  华夏复兴基金9.711426%的“中签率”之低超过了今年4月10日首发的上投摩根内需动力基金11%的认购比例。该基金发行当天引来900亿资金的疯狂追捧,按照在募集期内最终确认的有效认购金额拟不超过100亿元(不包括利息)规模上限的规定,上投摩根内需动力基金部分确认的比例为11.099172%。

  由于今年3月22日首只宣布采取比例配售的汇丰晋信动态策略基金并没有达到发行上限,事实上3月28日发售的易方达价值成长基金成为国内首只以“比例配售”方式发行的新基金,该基金在有效认购期内获得的认购金额为194.57亿元人民币,最终确认的有效认购金额为109.99亿元人民币,确认的认购比例为56.534483%。此后,资金追捧具有品牌优势和优异的既往业绩的基金公司产品迅速成为常态。除了上投摩根内需动力基金和华夏复兴基金外,今年8月13日发行的中邮核心成长基金也迎来了认购狂潮。该基金发行当天有效认购金额为654.86亿元,由于认购上限为150亿元,有效认购申请的确认比例为22.9%。

  今年以来,由于股市向好,赚钱效应明显,大量的资金流入证券市场,基金作为专家投资

理财,分散风险的工具,越来越被广大的普通投资者认可,从一季度开始,新基金发行速度虽然逐步加快,但排队抢购现象却日益严重。“全额预缴比例配售”的新认购方式正是在这种情况诞生的。与以往的基金发售模式相比,“比例配售”方案的区别主要体现在基金热销时、认购申请超出限售额度时则对募集期内的有效认购申请采用比例确认的原则给予部分确认,并将未确认部分的认购款项退还给投资者。

    新浪声明:本版文章内容纯属作者个人观点,仅供投资者参考,并不构成投资建议。投资者据此操作,风险自担。
 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值