排序问题思考

几个月前面试被问到这样一个问题:对一个无序的数组进行排列,要求奇数在左边,偶数在右边,奇数按照从大到小,偶数按照从小到大。

方法1:那个时候我给出的解决办法就和题目的描述一样设置两个变量i,j,i从左边扫描数组,j从右边扫描数组,当i位置为偶数,j位置为奇数就交换,直到i==j,这样就把奇数偶数分开了,再对两边分别快速排序就好了。

假设数组大小为n,奇数个数为s,偶数个数为t,那么上面的时间复杂度为:n+slogs+tlogt,由于n至少会小于slogs, tlogt中的一个,所以时间复杂度可以表示为:O(slogs+tlogt).

然后,很明显我中枪了,因为我的方法就是老老实实的按照题目的思路去解决的。一般按照题目思路来解决的办法都不是最好的!这是面试官说的话。


面试官给我说了一个方法:

方法2:直接整体排序,只是定义一个比较函数,例如(当然还有更好的代码):
int com(int a, int b)
{
    //if a>=b, return 1
    //if a<b, return -1
    if(a%2 + b%2 == 2) //两个都为奇数
        if(a>=b)
            return 1;
        else
            return -1;
    else if(a%2 + b%2 > 0) //一个为奇数,一个为偶数
        return 1;
    else if(a>=b)
        return 1;
    else
        return -1;
}
这样子就可以通过调用com函数来直接整体排序了,此时的时间复杂度为:O(nlong)


但事实上两个算法到底哪个好呢?

对比:我们来对两种方法的时间复杂度做一个比较:
由于n=s+t,所有O(nlog(n)) = O((s+t)logn) = O(slogn+tlogn)>O(slogs+tlogt)
也就是说前一种方法的效率更高??!!!!!!
如果真是这样的话,那不是出现大矛盾了??!!!

矛盾:以快速排序为例来说明这个矛盾
我们都知道快速排序的步骤是:找一个枢纽点,把小于枢纽点的放到左边,大于的放到右边,然后再分别对左右做相同的操作。
这时假设左边个数为s,右边个数为t,而已知对长度为n的数组排序的时间复杂度为O(nlogn),那么在快速排序的第一次遍历后,分别对大小为s和t的数组进行排序,时间复杂度为:n+slogs+tlogt < nlogn????这是怎么回事????

矛盾解决:
昨天跟老大讨论一下这个问题,挺牛的,一眼就看出了问题所在。
事实上没有矛盾,s,t中至少有一个大于等于n/2,不妨假设s=t=n/2,那么:
O(n+slogs+tlogt)=O(slogs)=O((n/2)log(n/2))=O((n/2)(logn - 1))=O((n/2)logn)=O(nlogn)
所以时间复杂度是一样的,没有矛盾。
11086 排序问题探讨 时间限制:1000MS 内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题 语言: 无限制 Description 此题以程序填空的形式进行,请将下列程序框架复制到本机,并按下面要求填充完整后再用g++编译器提交, 在不改变程序框架情况下,可以自由添加所需的函数和变量,或修改合适的函数参数。 1,请改写一个"递归"的插入排序排序a[0…n-1],先递归的排序a[0…n-2],然后再将a[n-1]插入到已排序的a[0…n-2]中去。 2,自然合并排序,书上2.7节最后介绍的算法,请实现它。 3,快速排序,选择"中位数"作为轴值然后进行左右段分区,请实现它。 #include #include "stdlib.h" using namespace std; const int SIZE = 10001; int a[SIZE]; void RecurInsertionSort(int p, int q) //对a[p…q]的递归插入排序,参数可根据自己需要修改。 { …… } void NaturalMergeSort(int n) //对n个元素的自然合并排序,参数可根据自己需要修改。 { …… } int Partition(int x, int p, int q) //以x为基准元素划分a[p…q],返回基准下标. 书上2.8节有。参数可根据自己需要修改。 { …… } int median(int p, int q) //挑出a[p…q]的中位数,并返回中位数,参数可根据自己需要修改。 { …… } void QuickSort(int p,int q) //参数可根据自己需要修改。 { if(p>=q)return; int x = median(p, q); int i=Partition(x,p,q); QuickSort(p,i-1); QuickSort(i+1,q);//递归 } int main() { int i,n; cin >> n; //递归插入排序 for(i=0;i> a[i]; } RecurInsertionSort(0,n-1); cout << "Insert sort: "; for(i=0;i<n;i++) { cout << a[i] << ' '; } //自然合并排序 for(i=0;i> a[i]; } NaturalMergeSort(n); cout << "\nNatural merge sort: "; for(i=0;i<n;i++) { cout << a[i] << ' '; } //快速排序 for(i=0;i> a[i]; } QuickSort(0, n-1); cout << "\nQuick sort: "; for(i=0;i<n;i++) { cout << a[i] < 1) { RecurInsertionSort(p, q-1); Insert(p,q); } else return; } 2,自然合并排序 参照书上的思想. 3.选择问题:选中位数。用随机选轴值的“快速选择算法”获得,随机选轴值可以获得比较好的性能,倒是无须用“中间的中间”选轴值那么麻烦。 作者 zhengchan --------------------------------------------------------------------------------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值