传送门:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2337
思路:看到异或,那就按位做。
假设现在在做第i位,为了描述方便,现在的边权是val[y]&(1<<i)
设f[x]表示x到n的路径异或和为1的期望,
那么就有方程f[x]=∑f[son[x]]*(1-val[y])(如果边权为0)+(1-f[son[x]])*val[y](如果边权为1)
然后解方程就可以了。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int maxn=205,maxm=20010;
const double eps=1e-10;
using namespace std;
typedef double ld;
int n,m,pre[maxm],now[maxn],son[maxm],val[maxm],tot,deg[maxn];ld a[maxn][maxn],ans;
void add(int x,int y,int z){pre[++tot]=now[x],now[x]=tot,son[tot]=y,val[tot]=z,++deg[x];}
void gauss(){
/*for (int i=1;i<=n;i++,puts(""))
for (int j=1;j<=n+1;j++)
printf("%.10f ",(double)a[i][j]);*/
for (int i=1;i<=n;i++){
int id=i;ld maxs=0.0;
for (int j=i;j<=n;j++) if (fabs(a[j][i])>maxs) id=j,maxs=fabs(a[j][i]);
if (id!=i) for (int j=1;j<=n+1;j++) swap(a[id][j],a[i][j]);
ld t=a[i][i];for (int j=1;j<=n+1;j++) a[i][j]/=t;
for (int j=1;j<=n;j++)
if (j!=i){
ld t=a[j][i];
for (int k=1;k<=n+1;k++) a[j][k]-=t*a[i][k];
}
}
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1,x,y,z;i<=m;i++){
scanf("%d%d%d",&x,&y,&z),add(x,y,z);
if (x!=y) add(y,x,z);
}
for (int i=0;i<=30;i++){
memset(a,0,sizeof(a));
for (int x=1;x<=n-1;x++){
a[x][x]=1.0;
for (int y=now[x];y;y=pre[y]){
if (val[y]&(1<<i)) a[x][son[y]]+=1.0/deg[x],a[x][n+1]+=1.0/deg[x];
else a[x][son[y]]-=1.0/deg[x];
}
}
a[n][n]=1.0,gauss(),ans+=(a[1][n+1])*(1<<i);
}
printf("%.3lf\n",(double)ans);
return 0;
}