Shuffle阶段详细解读

Shuffer阶段说明 shuffle阶段主要包括map阶段的combine、group、sort、partition以及reducer阶段的合并排序。Map阶段通过shuffle后会将输出数据按照reduce的分区分文件的保存,文件内容是按照定义的sort进行排序好的。Map阶段完成后会通知...

2017-09-02 21:25:01

阅读数 1779

评论数 0

MapReduce 的格式输入----MultipleInputs多个输入

针对 MapReduce的数据嘚瑟输入格式可能不同,有些数据可能以制表符分隔文本文件,有些数据可能是二进制顺序文件,即使它们的格式相同,它们的表示也看可能不同,因此需要分别进行解析。 MultipleInputs可以妥善处理这些问题,它允许为每条输入路径指定InputFprmat和Mapper p...

2017-08-21 21:10:44

阅读数 186

评论数 0

MapReduce 的格式输入----NLineInputFormat

通过TextInputFormat和keyvalueTextInputformat,每个Mapper收到的输入的行数不同,行数取决于分片的大小和行的长度,如果希望mapper收到固定的行数的输入,需要将NLineInputFormat作为InputFormat使用,与TextInputFormat...

2017-08-21 21:07:17

阅读数 294

评论数 0

MapReduce的输入格式---KeyValueTextInputFormat---源码分析

通常情况下,文件的每一行是一个键--值对,使用某个分解符进行分割,比如制表符,例如,由TextOutFormat(即Hadoop的默认输出就是这种),如果要正确处理这种文件,KeyValueTextInputFormat比较合适。 1、MaxTempMapper package hadoo...

2017-08-21 21:03:21

阅读数 168

评论数 0

MapReduce 的格式输入----SequenceFileInputFormat ---源码分析

MapReduce不仅可以处理文本数据,还可以处理二进制数据。 Hadoop顺序文件存储格式是二进制的键-值对序列,使用顺序文件作为MapReduce的输入,可以使用SequenceFileInputFormat。键-值对是由顺序文件格式决定,只需要保证map的输入格式正确,例如顺序文件的格式是I...

2017-08-21 20:49:13

阅读数 159

评论数 0

CombineFileinputFormat处理大批量小文件

请查看链接 http://note.youdao.com/noteshare?id=1dbcfd6118584a2e099fef0160460811&sub=D9C588C547804FE8B895A4D6F056F191

2017-08-19 18:42:25

阅读数 390

评论数 0

MapReduce 本地化优先策略

http://note.youdao.com/noteshare?id=db6a42debfcb09a1a6d54a497e760f68&sub=649D30D6AD144AB8AC13802E61B47E3E 1、map具备本地化优势策略  map执行时优先选择在存储HDFS数据...

2017-08-19 15:37:43

阅读数 691

评论数 0

MapReduce---chain链条式操作

准备数据: hello world of tom1 hello world of tom1 hello world of tom2 hello world of tom3 hello world of tom3 hello world of tom4 hello world of t...

2017-08-18 23:26:30

阅读数 271

评论数 0

MapReduce---连接操作--Reduce端连接

MapReduce---连接操作--Reduce端连接 1  、定义组合CombKey package hadoop.join.reduce; import org.apache.hadoop.io.WritableComparable; import java.io.DataInput...

2017-08-18 22:41:13

阅读数 155

评论数 0

MapReduce---连接操作--map端连接

在项目开发中,要实现两个“表”的join操作,其中一个表数据量小,一个表很大,这种场景在实际中非常常见,比如“订单日志” join “产品信息”采用map端连接  原理:适用于大表 + 小表(载入内存)。 map之前执行,加载文件到内存,形成map 可以大大提高join操作的并发度...

2017-08-18 22:29:31

阅读数 185

评论数 0

MapReduce数据倾斜解决方案2-- 自定义分区类---二次作业

数据倾斜:大量数据涌向到一个或者几个reduce,造成大量的reduce空闲。 解决数据倾斜方案2:自定义分区类---二次作业 下面以单次统计为例进行说明: 1、DataLeanMapper1 package hadoop.lean.partitioner; import...

2017-08-18 22:17:06

阅读数 274

评论数 0

MapReduce数据倾斜解决方案1--1、重新设计key---二次作业

数据倾斜:大量数据涌向到一个或者几个reduce,造成大量的reduce空闲。 解决数据倾斜方案1:重新设计key---二次作业 下面以单次统计为例进行说明: 1、DataLeanMapper1 对key重新设计,增加随机数后缀 package hadoop.lean.key; impo...

2017-08-18 22:08:49

阅读数 745

评论数 0

MapReduce----辅助排序(二次排序)

MapReduce框架在记录到达reduce之前按key进行记录排序,但是建所对应的值并没有排序。甚至在不同的执行轮次中,这些值的排序也是不固定的,应为它们 来自不同的map任务且不同的map任务在不同的轮次中完成的时间也是不同的,一般来说,大多数MapReduce程序会避免reduce函数依赖...

2017-08-18 21:51:56

阅读数 300

评论数 0

Mapreduce---RandomSampler采样实现全排序

排序是MapReduce的核心技术,排序分为部分排序,全排序和二次排序。 部分排序:调用默认的HashPartitioner,不需要操作,每个reduce聚合的key都是有序的。 全排序:对reduce输出的所有的key实现排序              方法1:设置一个redu...

2017-08-18 21:31:59

阅读数 1400

评论数 0

MapReduce---自定义分区类实现全排序

排序是MapReduce的核心技术,排序分为部分排序,全排序和二次排序。 部分排序:调用默认的HsshPartitioner,不需要操作,每个reduce聚合的key都是有序的。 全排序:对reduce输出的所有的key实现排序              方法1:设置一个reducde  ...

2017-08-18 21:23:36

阅读数 397

评论数 0

模拟分布式集群调试

集群环境:namenode s100                        2namenode s104                         datanode  s101、s102、s105    在完全分布式集群,为了就跟深入的剖析MapReduce计算模型的工作机制,...

2017-08-15 23:33:30

阅读数 284

评论数 0

源码剖析MapReduce作业提交机制(本地模式)

深入剖析Hadoop 中的MapReduce作业的提交机制,有助于更深入的掌握MapReduce的工作原理,通过调优提高MapReduce性能。 (请放大后查看)

2017-08-15 22:44:17

阅读数 128

评论数 0

hdfs源码剖析文件写入过程时序图

为了更深入的研究客户端与之交互的HDFS,namenode,datanode之间的数据流是怎么进行的,剖析了文件写入HDFS的过程。

2017-08-15 22:14:44

阅读数 209

评论数 0

Intellij IDEA 中文输入法卡解决方法

环境为:jdk jre1.8.0_92 ,idea 2016.3.24(64),搜狗输入法7.0正式版。 方法: 1. 下载jdk 2. 关掉idea,然后去idea安装路径下把jre64文件夹重命名掉,或删掉,最好是重命名掉,出问题后还能恢复过来,下面的图片中是重命名成jre_bak了; ...

2017-08-09 17:49:52

阅读数 751

评论数 0

文件归档与解档问题

1在大数据开发中,或这一些项目中,经常遇到很多小文件的处理,为了减小namenode内存的占用,提高效率,经常将小文件压缩并归档处理,而在流的读取与写的操作的时候,归档后还需要解档,下面写一个工具类,实现文件的归档与解档: package java.io; import java.util.Da...

2017-07-29 00:34:49

阅读数 893

评论数 0

提示
确定要删除当前文章?
取消 删除