Android性能优化典范B4

15) Smaller PNG Files

尽量减少PNG图片的大小是Android里面很重要的一条规范。相比起JPEG,PNG能够提供更加清晰无损的图片,但是PNG格式的图片会更大,占用更多的磁盘空间。到底是使用PNG还是JPEG,需要设计师仔细衡量,对于那些使用JPEG就可以达到视觉效果的,可以考虑采用JPEG即可。我们可以通过Google搜索到很多关于PNG压缩的工具,如下图所示:


这里要介绍一种新的图片格式:Webp,它是由Google推出的一种既保留png格式的优点,又能够减少图片大小的一种新型图片格式。关于Webp的更多细节,请点击这里

16) Pre-scaling Bitmaps

对bitmap做缩放,这也是Android里面最遇到的问题。对bitmap做缩放的意义很明显,提示显示性能,避免分配不必要的内存。Android提供了现成的bitmap缩放的API,叫做createScaledBitmap(),使用这个方法可以获取到一张经过缩放的图片。


上面的方法能够快速的得到一张经过缩放的图片,可是这个方法能够执行的前提是,原图片需要事先加载到内存中,如果原图片过大,很可能导致OOM。下面介绍其他几种缩放图片的方式。

inSampleSize能够等比的缩放显示图片,同时还避免了需要先把原图加载进内存的缺点。我们会使用类似像下面一样的方法来缩放bitmap:



另外,我们还可以使用inScaled,inDensity,inTargetDensity的属性来对解码图片做处理,源码如下图所示:


还有一个经常使用到的技巧是inJustDecodeBounds,使用这个属性去尝试解码图片,可以事先获取到图片的大小而不至于占用什么内存。如下图所示:


17) Re-using Bitmaps

我们知道bitmap会占用大量的内存空间,这节会讲解什么是inBitmap属性,如何利用这个属性来提升bitmap的循环效率。前面我们介绍过使用对象池的技术来解决对象频繁创建再回收的效率问题,使用这种方法,bitmap占用的内存空间会差不多是恒定的数值,每次新创建出来的bitmap都会需要占用一块单独的内存区域,如下图所示:


为了解决上图所示的效率问题,Android在解码图片的时候引进了inBitmap属性,使用这个属性可以得到下图所示的效果:


使用inBitmap属性可以告知Bitmap解码器去尝试使用已经存在的内存区域,新解码的bitmap会尝试去使用之前那张bitmap在heap中所占据的pixel data内存区域,而不是去问内存重新申请一块区域来存放bitmap。利用这种特性,即使是上千张的图片,也只会仅仅只需要占用屏幕所能够显示的图片数量的内存大小。下面是如何使用inBitmap的代码示例:


使用inBitmap需要注意几个限制条件:

  • 在SDK 11 -> 18之间,重用的bitmap大小必须是一致的,例如给inBitmap赋值的图片大小为100-100,那么新申请的bitmap必须也为100-100才能够被重用。从SDK 19开始,新申请的bitmap大小必须小于或者等于已经赋值过的bitmap大小。
  • 新申请的bitmap与旧的bitmap必须有相同的解码格式,例如大家都是8888的,如果前面的bitmap是8888,那么就不能支持4444与565格式的bitmap了。

我们可以创建一个包含多种典型可重用bitmap的对象池,这样后续的bitmap创建都能够找到合适的“模板”去进行重用。如下图所示:


Google介绍了一个开源的加载bitmap的库:Glide,这里面包含了各种对bitmap的优化技巧。

18) The Performance Lifecycle

大多数开发者在没有发现严重性能问题之前是不会特别花精力去关注性能优化的,通常大家关注的都是功能是否实现。当性能问题真的出现的时候,请不要慌乱。我们通常采用下面三个步骤来解决性能问题。

  • Gather:收集数据

我们可以通过Android SDK里面提供的诸多工具来收集CPU、GPU、内存、电量等性能数据。

  • Insight:分析数据

通过上面的步骤,我们获取到了大量的数据,下一步就是分析这些数据。工具帮我们生成了很多可读性强的表格,我们需要事先了解如何查看表格的数据,每一项代表的含义,这样才能够快速定位问题。如果分析数据之后还是没有找到问题,那么就只能不停的重新收集数据,再进行分析,如此循环。

  • Action:解决问题

定位到问题之后,我们需要采取行动来解决问题。解决问题之前一定要先有个计划,评估这个解决方案是否可行,是否能够及时的解决问题。

19) Tools not Rules

虽然前面介绍了很多调试的方法,处理技巧,规范建议等等,可是这并不意味着所有的情况都适用,我们还是需要根据当时的情景做特定灵活的处理。

20) Memory Profiling 101

围绕Android生态系统,不仅仅有Phone、还有Wear、TV、Auto等。对这些不同形态的程序进行性能优化,都离不开内存调试这个步骤。这节中介绍的内容大部分和Android性能优化典范Android性能优化之内存篇重合,不展开了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值