汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
这里我们分别来表示一下
假设
我们A上面的数字为1,那么我们只需要直接A->C,只需要一步
个数为2时,我们需要 A->B,A->C,B->C 三步完成
个数为3时, 我们需要7步才能完成
A->C,
A->B,
C->B,
A->C,
B->A,
B->C,
A->C
所以移动次数是2^n - 1,
本质上来说是将一个大问题不断的拆分为小问题,小问题再拆分为更小的问题,直到拆无可拆,我们可以将2来想象成n,那么就会发现操作的步骤如下
(1) 把n-1个盘子由A 移到 B;
(2) 把第n个盘子由 A移到 C;
(3) 把n-1个盘子由B 移到 C;
接着让我们用代码来进行实现
public class ExampleUnitTest {
int count = 0;
@Test
public void test() {
hanoi(3, "A", "B", "C");
}
public void move(int n, String start, String end) {
System.out.println("第" + (++count) + "次移动 : " +
" 把 " + n + " 号圆盘从 " + start + " ->移到-> " + end);
}
public void hanoi(int n, String A, String B, String C) {
if (n == 1) {
move(1, A, C);//直接从A移到C
} else {
hanoi(n - 1, A, C, B);//递归,把A塔上编号1~n-1的圆盘移到B上,以C为辅助塔,相当于不需要变动
move(n, A, C);//把A塔上编号为n的圆盘移到C上
hanoi(n - 1, B, A, C);//递归,把B塔上编号1~n-1的圆盘移到C上,以A为辅助塔,不需要变动
}
}
}
执行的结果
其实是递归的不断调用