python数据分析
tianguiyuyu
这个作者很懒,什么都没留下…
展开
-
假设检验之z-检验,t-检验,卡方检验
假设检验:什么是假设:对总体参数(均值,比例等)的具体数值所作的陈述。比如,我认为新的配方的药效要比原来的更好。什么是假设检验:先对总体的参数提出某种假设,然后利用样本的信息判断假设是否成立的过程。比如,上面的假设我是要接受还是拒绝呢。假设检验的应用:推广新的教育方案后,教学效果是否有所提高醉驾判定为刑事犯罪后是否会使得交通事故减少男生和女生在选文理科时是否存在性别因素影响假设检验的基本思想:显著...原创 2018-06-24 11:41:04 · 53717 阅读 · 2 评论 -
概率分布中的cdf,pdf, pmf
一 概念解释二 数学表示三概念分析四分布函数的意义五参考文献一. 概念解释PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。PMF : 概率质量函数(probability mass function), 在概率论中,概率...转载 2018-06-25 12:56:42 · 13255 阅读 · 0 评论 -
聚类分析
本文介绍几种常用的聚类分析方法,层次聚类,k-means,基于密度的聚类DBSCAN.2 k-means3 DBSCAN4 多种聚类算法效果显示:5 额外示例:原创 2018-07-01 11:59:09 · 196 阅读 · 0 评论 -
贝叶斯分析
1 先来说一下贝叶斯统计与经典统计的不同之处:简单说,频率派认为估计对象(参数)是一个未知的固定值。而贝叶斯却认为未知的参数都是随机变量。我曾经见到这么个不错的例子:我们要通过一些事实估计“爱因斯坦在1905年12月25日晚上八点吸烟”的真假。定义参数:,吸烟;,没吸烟。那么频率派认为,爱因斯坦有没有曾经在这时刻吸烟是事实,是取值0或者1的固定数,不能说"=1的概率是xxx";然而贝叶斯派认为可...原创 2018-07-01 20:58:33 · 2197 阅读 · 0 评论 -
数据科学必备的分布
正态分布正态分布代表了宇宙中大多数情况的运转状态,大量的随机变量被证明是正态分布的。若随机变量X服从一个数学期望为u, 方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。公式¶f(x|μ,σ)=12πσ 2 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ √ e −(x−μ) 2 2...原创 2018-07-02 10:05:23 · 308 阅读 · 0 评论