题意:不说了,自己看吧,很好懂的
(难得写一篇题解)
这题还是很有意思的
首先可以推一个公式
sigma( ceil(a[i]/d) )*d <= x+sigma(a[i])
这里要求d的max,然而这个d并不是单调的
考虑遍历所有的d
这里有一个性质,a[i]/d的值并不会太多,一共只有2sqrt(n)个(不论是ceil还是floor)
证明:令n=sqrt(a[i])
1. d<n 值有n个
2. d>n => a[i]/d<n 这样的值也只有n个
故最多有2n个
这在莫比乌斯+分块优化中十分常见
另外ceil(n/d) => floor( (n+d-1)/d )
所以总体上对于每个a[i]有2*sqrt(a[i])个关键点,所有的关键点共有o(nsqrt(n))个
在每一段上ceil里的值都是不变的,只有d可以变,所以只要对于每一段求出最大的d即可
那么还有一个关键问题,就是从小到大枚举d时,有段的dmin,怎么得到dmax呢?
这里给出严谨的推导
1.对于floor(n/j) 这里n相当于a[i],j相当于刚才枚举的d,i是要求的dmax
令d=floor(n/j)
有 i*d<=n && (i+1)*d>n
解出 n/d >= i > n/d - 1
可知 i=floor(n/d)
2.对于ceil(n/j) 这里n相当于a[i],j相当于刚才枚举的d,i是要求的dmax
令d=ceil(n/j)=floor( (n+j-1)/j )
有 n+i-1 >= i*d && n+i < (i+1)*d
解出 (n-1)/(d-1) >= i > (n-d)/(d-1)
(n-d)/(d-1) => (n-1)/(d-1)-1
可知 i=floor( (n-1)/(d-1) )
总体说的比较抽象,其实你拿个数打个表就明白我在说什么了
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <map>
#include <string>
#include <iostream>
#include <queue>
#define pii pair<int,int>
#define xx first
#define yy second
#define mp make_pair
typedef long long ll;
#define eps 1e-9
using namespace std;
typedef long long ll;
const int mod = 2e9+7;
const int N = 2005;
const int M = 200000;
const ll INF = 1e16;
ll a[105], k[105], x, mx = 0;
ll n;
ll findlast( ll t )
{
ll res = INF;
for( int i = 1; i <= n; i ++ ){
ll d = (a[i]+t-1)/t;
if( d == 1 ) continue;// 如果d=1,则上限为无穷
else res = min( res, (a[i]-1)/(d-1) );
}
return res;
}
int main()
{
ll i, j;
scanf("%lld%lld", &n, &x);
for( i = 1; i <= n; i ++ ){
scanf("%lld", &a[i]);
mx = max( mx, a[i] );
x += a[i];
}
ll ans = 0, last;
// for( i = 1; i <= n; i ++ ){
// printf("%lld:\n", a[i]);
// for( j = 1; j <= a[i]; j ++ )
// printf("%lld %lld\n", j, (a[i]+j-1)/j);
// puts("");
// }
for( i = 1; i <= mx; i = last+1 ){
last = findlast( i );
ll sum = 0;
for( j = 1; j <= n; j ++ ){
sum += (a[j]+last-1)/last;
}
//printf("%lld %lld %lld\n", i, last, x/sum);
if( x/sum >= i && x/sum <= last )
ans = max( ans, x/sum );
}
printf("%lld\n", ans);
}