2.1 数据处理伦理:引言
上次讲了数据管理的基础,今天讲点更虚的数据处理伦理。别以为这玩意儿不重要,搞不好就让你公司关门大吉,或者你自己吃不了兜着走。听好了,这是基础中的基础。
2.2 核心概念
看看这几个核心概念都是重点。
第一,数据影响人。你处理的数据可能决定别人能不能找到工作,能不能贷款,甚至能不能活下去。质量不行,后果自负。
第二,滥用风险。数据要是被坏人拿去干坏事,或者被内部人乱用,那还得了防着点。

第三,经济价值。数据能赚钱,但谁该赚,怎么赚,这背后全是伦理问题。别光盯着钱,忘了规矩,法律是底线,不是天花板。你看那些GDPR都是法律要求,但光守法就够了吗?天真了。

法律管的是最坏的情况,伦理要考虑的是所有情况。数据质量差,就算合法也可能误伤人。所以数据管理不只是技术活,更是良心活。从头到尾都要考虑伦理,别等出了事再哭,这点想不明白,趁早改行~~~~。
2.3 数据处理伦理语境关系图
这张图看着复杂,其实就是告诉你,数据伦理不是一个人的事,也不是一个部门的事,是整个组织的大事。目标是啥?控制风险,改变文化,让大家都懂规矩。输入是啥?是你们的规矩、战略、文化、法律。活动是啥?就是查问题、定策略、搞培训、堵漏洞,盯着看。

输出是啥?是一堆文件、报告、指标。参与者是谁?高管、员工、监管机构、客户方法工具是啥?沟通培训、模型、网站看懂没?这就是一个系统工程。别告诉我你连流程图都看不懂,为什么要做这些?因为这能带来竞争优势。
2.4 业务驱动因素

听起来是不是很玄乎,但事实就是如此,你做得比别人更靠谱,客户、合作伙伴、监管机构都信任你,这就是竞争力,而且这能提升你的可信度。你想想,谁愿意跟一个满嘴跑火车、数据乱七八糟的公司打交道?治理活动就是要建立规矩,确保结果靠谱,不辜负别人的信任。别一天到晚想着怎么钻空子,想想怎么把事情做好。
2.5 数据处理伦理原则
第一个原则,尊重他人。这话说起来简单,做起来难。数据是资产,但背后是活生生的人。你设计系统的时候,有没有想过会不会侵犯别人的隐私,有没有限制人家的选择权?特

最低0.47元/天 解锁文章
1560

被折叠的 条评论
为什么被折叠?



