YOLO-NAS教程详细介绍如何使用 SuperGradients 训练 ResNet18 模型

本教程详细介绍了如何使用SuperGradients训练ResNet18模型进行CIFAR10图像分类。内容涵盖快速安装、实验设置、数据集加载、模型定义、训练参数、训练过程、模型预测和完整代码。通过SuperGradients的预训练权重进行微调,提高了模型的验证准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在此示例中,我们将使用 SuperGradients 在 CIFAR10 图像分类数据集上从头开始训练 ResNet18 模型。我们还将通过迁移学习以及在 ImageNet 数据集上预先训练的权重来微调同一模型。

快速安装

对于这个例子,唯一必要的包是超级梯度。安装超级梯度还将安装运行本示例中的代码所需的所有依赖项。

pip install super-gradients

1. 实验设置

首先,我们将初始化我们的训练器,它是一个 SuperGradients Trainer 对象。

from super_gradients import Trainer

训练器负责训练模型、评估测试数据、进行预测和保存检查点。

要初始化训练器,必须提供实验名称。我们还将通过ckpt_root_dir参数提供检查点根目录。在此目录中,将驻留所有实验的日志、张量板和检查点目录。该参数是可选的,如果未提供࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TD程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值