C++插入排序,递归实现,分治法
#include <iostream>
#include <ctime>
#include<Windows.h>
#include <cstdlib>
using namespace std;
//分治法,将大问题分解为若干小问题
//递归实现插入排序,时间复杂度N*LogN
void Merge(int A[], int p, int q, int r) //将一个长度为A[p,r]的数组,分解为B[p,q]和C[q+1,r],并且B和C数组都是排序好的
{
int n1 = q - p + 1; //B的长度
int n2 = r - q;// C的长度
int* Order_1 = new int[n1]; //给新数组分配空间
int* Order_2 = new int[n2];
for (int i = 0; i < n1; i++) //将数组B赋值
{
Order_1[i] = A[p + i];
}
//Order_1[n1] = 999;
for (int j = 0; j < n2; j++) //将数组C赋值
{
Order_2[j] = A[q + 1 + j];
}
//Order_2[n2] = 999;
int i = 0;
int j = 0;
Order_1[n1] = 999999; //设置一个极大的哨兵牌
Order_2[n2] = 999999;
for (int k = p; k <= r; k++)
{
if (Order_1[i] < Order_2[j]) //比较数组B和C第一个数的大小,将小的值赋值给数组A
{
*(A + k) = *(Order_1 + i);
i++;
}
else
{
*(A + k) = *(Order_2 + j);
j++;
}
}
}
void Merge_sort(int A[], int p, int r) //将大问题分解为若干小数组
{
if (p < r)
{
int q = (r + p) / 2; //在p和r之间平分,取中间值q,从而将数组[p,r]分解为[p,q]和[q+1,r]
Merge_sort(A, p, q); //继续分解数组,在p和q之间平分直到分解为数组只有两个数字
Merge_sort(A, q + 1, r); //在q+1和r之间平分
Merge(A, p, q, r); //将子数字排序
}
return;
}
int main()
{
DWORD start_time = GetTickCount();//获取初始时间
srand((int)time(0));//随机数种子
int const N = 20000;//数组长度,定义为一个常量
int array[N];// 输入数组,数组的定义时,A[]括号里应该为常量
int min = 0;
int max = N - 1;// sizeof(array) / sizeof(array[0]) - 1;//数组长度-1,代表数组最后一个元素的地址
for (int i = 0; i < N; i++)
{
array[i] = rand() % 100; //0-99的随机数
cout << array[i] << ",";
}
cout << endl;
Merge_sort(array, min, max); //递归插入排序
cout << "排序后为:" << endl;
for (int i = 0; i <= max; i++) //数组输出
{
cout << array[i] << ",";
}
cout << endl;
DWORD end_time = GetTickCount();//结束时间
cout << "The run time is : " << (end_time - start_time) << "ms!" << endl;
}
值得注意的几个问题:
1、向函数传递数组A[] 时,实际上传递到函数中为数组首元素的地址
2、数组array[]
sizeof(array) 得到了整个数组所有元素的所含内存空间
sizeof(array[i])得到了数组里面i元素的所占空间,
sizeof(array)/sizeof(array[i]) 既可以得到数组元素个数