一致性Hash算法原理详解

一、Hash算法

  • 定义
    哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式

应用场景

  • 场景
    N 个 cache 服务器(后面简称 cache ),将一个对象 object 映射到 N 个 cache 上,计算 出object 的 hash 值,均匀的映射到到 N 个 cache ,如key%N,key是object 的hash值,N是服务器节点数
  • 出现的问题
    如果有一个服务器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了
    • 一个服务器宕机退出集群
      所有映射到服务器节点的对象都会失效,服务器节点从集群中移除,这时候 集群 是 N-1 台,映射公式变成了 hash(object)%(N-1)
    • 一个服务器加入集群
      集群新加服务器节点,这时候 集群 是 N+1 台,映射公式变成了 hash(object)%(N+1) ,所有映射到服务器节点的对象都会失效
  • 解决方案
    一致性Hash算法

二、一致性Hash算法

一致性Hash性质

  • 单调性(Monotonicity)
    单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲区加入到系统中,那么哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲区中去,而不会被映射到旧的缓冲集合中的其他缓冲区
  • 平衡性(Balance)
    平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件
  • 分散性(Spread)
    • 在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中
    • 这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性
  • 负载(Load)
    负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷
  • 平滑性(Smoothness)
    平滑性是指缓存服务器的数目平滑改变和缓存对象的平滑改变是一致的

hash算法原理

  1. 环形hash 空间
    考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的数值空间;我们可以将这个空间想象成一个首( 0 )尾( 2^32-1 )相接的圆环
    在这里插入图片描述

  2. 服务器映射到hash 空间

  • 将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将四台服务器Node A、Node B、Node C、Node D使用ip地址哈希后在环空间的位置
    在这里插入图片描述
  1. 对象映射到hash 空间
    将objectA、objectB、objectC、objectD四个对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环上,然后从数据所在位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器
    在这里插入图片描述
  • 根据一致性哈希算法,objectA会被定为到Node A上,objectB被定为到Node B上,objectC被定为到Node C上,objectD被定为到Node D上
  1. 集群服务器节点宕机
    现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响
    在这里插入图片描述
  2. 集群增加服务器节点
    在系统中增加一台服务器Node X
    在这里插入图片描述
  • 此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响
  1. 总结
    一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性

三、虚拟节点

一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如系统中只有两台服务器,其环分布如下
在这里插入图片描述

  • 此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点
  • 具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点
    在这里插入图片描述
  • 同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值