给定 nums = [2, 7, 11, 15], target = 9 因为 nums[0] + nums[1] = 2 + 7 = 9 所以返回 [0, 1]
解题思路1:
两个循环,轻松搞定:
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
if nums[i] + nums[j] == target:
return [i, j]
然则- -LeetCode竟然说超时....想想也是,这个时间复杂度为n²,确实可以优化。
解题思路2:
在一次遍历之中,就可以浏览所有的数,不需要第二次遍历。只需要在一次遍历中,判断第二个数是否存在即可。
i = 0
while True:
num = nums[0]
sect = target - num
nums.remove(num)
i = i + 1
if sect in nums:
return i - 1, nums.index(sect) + i
然则- -LeetCode说用了1424 ms,只打败了22.57%的其他Python3用户。
这个的时间复杂度为2n,很难优化
解题思路3:
我读了下官方示例Java代码,发现,它与我思路相似,时间复杂度也是2n,但是,它是从小往大找,而我是从大往小找,把时间复杂度画成图大致是这样:
在极限情况下,我们使用的时间一致,但其他情况下我都远不如它。
改代码后大致是这样:
list = []
for num in nums:
otherNum = target - num
if otherNum in list:
first = nums.index(otherNum)
nums.remove(otherNum)
return [first, nums.index(num) + 1]
list.append(num)
代价是空间复杂度上多了个数组。但我们假设空间无限大,只看时间复杂度。
但实际上,此增加空间复杂度而换来的时间,划算。
然则,LeetCode说用了560 ms,只打败了30.92%的其他Python3用户。
解题思路4:
官方示例Java代码中,使用的是Map,不是List。
我们也换成Map试下:
dict = {}
lenth = len(nums)
for i in range(lenth):
otherNum = target - nums[i]
if otherNum in dict:
return [dict[otherNum], i]
dict[nums[i]] = i
36 ms,只打败了99.68%的其他Python3用户。
可恶!字典比列表强这么多么!
反而言之,字典的空间复杂度比列表的空间复杂度高多少呢?性价比如何?
应该要读数据结构书吧.....
是否有更优秀的算法呢?
我不知道..
我还是没读到算法书..也没找到LeetCode查看更优秀的代码的方法。