【Andrew Gelman Data Analysis Using Regression and Multilevel/Hierarchical Models】3.9 exercises 解答

本文提供了对Andrew Gelman书籍中数据分析练习的解答,涉及线性回归模型、假设检验、残差分析、预测及模型解释。通过模拟独立变量的回归分析,展示了统计独立情况下回归系数的显著性。同时,讨论了母亲年龄、教育水平对孩子测试成绩的影响,以及高中毕业状态的交互效应。此外,还分析了教师外貌与课程评价的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己写的答案,希望各位多加批评指正

第一题

  1. The folder pyth contains outcome y and inputs x1, x2 for 40 data points, with a further 20 points with the inputs but no observed outcome. Save the file to your working directory and read it into R using the read.table() function.
    (a) Use R to fit a linear regression model predicting y from x1, x2, using the first 40 data points in the file. Summarize the inferences and check the fit of your model.
    (b) Display the estimated model graphically as in Figure 3.2.
    (c ) Make a residual plot for this model. Do the assumptions appear to be met?
    (d) Make predictions for the remaining 20 data points in the file. How confident do you feel about these predictions?

Gelman老师的数据已经找不到了,所以就还是用下午的数据吧:简单回归模型

第二题

  1. Suppose that, for a certain population, we can predict log earnings from log height as follows:
    • A person who is 66 inches tall is predicted to have earnings of $30,000.
    • Every increase of 1% in height corresponds to a predicted increase of 0.8% in earnings.
    • The earnings of approximately 95% of people fall within a factor of 1.1 of predicted values.
    (a) Give the equation of the regression line and the residual standard deviation of the regression.
    (b) Suppose the standard deviation of log heights is 5% in this population. What, then, is the R2 of the regression model described here?

(a)

回 归 方 程 : l o g ( e a r n i n g s ) = α + 0.8 l o g ( h e i g h t ) + μ 回归方程:log(earnings)=\alpha + 0.8log(height)+\mu log(earnings)=α+0.8log(height)+μ

将 e a r n i n g = 30000 , h e i g h t = 66 带 入 上 述 方 程 , 得 α = 6.957229 将earning=30000, height=66带入上述方程,得\alpha=6.957229 earning=30000,height=66α=6.957229

#计算\alpha的值
a <- log
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值