Codeforces Contest 383 E Vowels SOSDP+容斥

This way

题意:

给你一些只含3个字符的字符串(只有字母表中前24个字符),现在自定义元音字符,如果一个字符串中含有至少一个元音字符,那么称为这个字符串是有效的,现在问你对于 2 24 2^{24} 224种元音定义的可能,输出每种可能性所含有效元音字符串的平方异或和。

题解:

SOSDP的本质就是高位前缀和,那么对于这道题,我们只需要判断一下每个字符串中有哪些不同的有效状态即可,同时要使用容斥,因为对于110这种状态,它会从100和010两种状态转移过来。

#include<bits/stdc++.h>
using namespace std;
const int N=1<<24;
int dp[N];
int main()
{
    int n;
    scanf("%d",&n);
    char s[5];
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s);
        dp[1<<(s[0]-'a')]++;
        if(s[1]!=s[0])
        {
            dp[1<<(s[1]-'a')]++;
            dp[(1<<(s[1]-'a'))|(1<<(s[0]-'a'))]--;
        }
        if(s[2]!=s[1]&&s[2]!=s[0])
        {
            dp[1<<(s[2]-'a')]++;
            dp[(1<<(s[1]-'a'))|(1<<(s[2]-'a'))]--;
            if(s[1]!=s[0])
                dp[(1<<(s[0]-'a'))|(1<<(s[2]-'a'))]--;
        }
        if(s[2]!=s[1]&&s[1]!=s[0]&&s[2]!=s[0])
            dp[(1<<(s[0]-'a'))|(1<<(s[1]-'a'))|(1<<(s[2]-'a'))]++;
    }
    int ans=0;
    for(int i=0;i<24;i++)
        for(int j=0;j<N;j++)
            if(j&(1<<i))
                dp[j]+=dp[j^(1<<i)];
    for(int i=1;i<N;i++)
        ans^=(dp[i]*dp[i]);
    printf("%d\n",ans);
    return 0;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值