题意:
给你一棵树,让你选择一些点,都有一个权值。每个点你可以对每个点做一次操作:将这个点所属子树的所有叶子结点加上一个值。问你如果想让所有的叶子结点取到任意值,取的点的权值和最小是多少,并且要输出所有可能可以取的点。
题解:
可以看出每个点都有一个管辖的区间,可以转换成为差分问题,然后的话可以将每个点的差分:l到r+1这两个点连条边(虽然我不是很懂为什么突然就可以转换到图上去)。这样的话将叶子结点取到任意值,也就是可以在每条边的一端加上一个值,在另一端减去一个值。这样要使得所有节点都能够修改到的话,这张差分图就必须要联通,那么又要所有的权值和最小,只需要找最小生成树即可。
对于第二个问题,查看每条边是否可以在最小生成树上,只需要每次对于相同权值的边,查看这两个端点是否属于同一集合即可,在这个权值查看完之后才能继续合并。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=2e5+5;
struct node{
int to,next;
}e[N*2];
int cnt,head[N],v[N];
void add(int x,int y){
e[cnt].next=head[x];
e[cnt].to=y;
head[x]=cnt++;
}
struct edge{
int x,y,val,id;
bool operator< (const edge& a)const {
return val<a.val;
}
};
vector<edge>edg;
int tim,lef[N];
void dfs(int x,int fa){
int f=0;
for(int i=head[x];~i;i=e[i].next){
int ne=e[i].to;
if(ne==fa)continue;
f=1;
dfs(ne,x);
lef[x]=lef[x]?lef[x]:lef[ne];
}
if(!f)
tim++,lef[x]=tim;
edg.push_back({lef[x],tim+1,v[x],x});
}
int fa[N];
int finds(int x){return x==fa[x]?fa[x]:fa[x]=finds(fa[x]);}
vector<int>ans;
int main()
{
memset(head,-1,sizeof(head));
int n,x,y;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&v[i]),fa[i]=i;
fa[n+1]=n+1;
for(int i=1;i<n;i++)
scanf("%d%d",&x,&y),add(x,y),add(y,x);
dfs(1,0);
sort(edg.begin(),edg.end());
ll sum=0;
for(int i=0,j=0;i<edg.size();i=j){
while(j<edg.size()&&edg[j].val==edg[i].val){
int fax=finds(edg[j].x),fay=finds(edg[j].y);
if(fax!=fay)
ans.push_back(edg[j].id);
j++;
}
for(int k=i;k<j;k++){
int fax=finds(edg[k].x),fay=finds(edg[k].y);
if(fax!=fay)
sum+=(ll)edg[k].val,fa[fay]=fax;
}
}
printf("%lld %d\n",sum,ans.size());
sort(ans.begin(),ans.end());
for(auto i:ans)
printf("%d ",i);
printf("\n");
return 0;
}