Codeforces 1425 B. Blue and Red of Our Faculty! —— dp求将一些数划分成两个相同部分,有丶东西

202 篇文章 6 订阅

This way

题意:

现在有一张图,只有1点连出去多条边,其它点有两条边连着。
现在有两个人在点1,他们每轮都要分别选一条灰色边走出去,并且这两条边不相同,然后将边染色成他们自己的颜色。
直到其中某一个人找不到出路了。
问你有多少种走法。

题解:

其实这张图就是多个简单环组成的,并且都连向点1.我们只需要查看是在环上相遇还是在1点相遇就行了。
当然每个也分成两种情况:
在环上未相遇:dp[i][j][0]
在环上点上相遇:dp[i][j][1]
在环上边上相遇:dp[i][j][2]
在1点相遇:dp[i][j][3]
在1点边上相遇dp[i][j][4]
注意为什么要将1点边上相遇和环上边上相遇分开是因为,环上边上相遇的话,对于当前的环可以考虑不取,但是1点边上相遇的话,所有环都必须要取,这是两种情况。
那么转移就非常简单了,首先就是假设当前环作为整个都是红色,或者整个都是蓝色,或者这个环不要。
然后就是假设红蓝两色在当前环上相遇了,需要枚举在哪个点相遇了,从未相遇转移过来。注意环上边上相遇的话,会少一条边,要剪掉
dp[i][j][k]表示到了第i个环,红/蓝两个颜色所占的边数差为j的时候,的情况
1点边上相遇的时候,不需要枚举点,但是一个环有两个入口,需要将答案*2.
最后的答案就是1,2,3,4这4种情况相加即可。
它空间好紧,long long 都开不了

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
const int N=2e3+5;
const ll mod=1e9+7;
int dp[N][N*2][5];
int a[N],cnt,tot,vis[N];
vector<int>son[N];
void dfs(int x){
    vis[x]=1;
    cnt++;
    for(int i:son[x]){
        if(vis[i])continue;
        dfs(i);
    }
}
int main()
{
    int n,N,x,y;
    scanf("%d%d",&n,&N);
    for(int i=1;i<=N;i++)
        scanf("%d%d",&x,&y),son[x].push_back(y),son[y].push_back(x);
    vis[1]=1;
    for(int i=2;i<=n;i++){
        if(!vis[i]){
            cnt=0;
            dfs(i);
            a[++tot]=cnt+1;
        }
    }
    dp[0][N][0]=1;
    dp[0][N][3]=1;
    //f[0][N]=1;
    int mx=0;
    for(int i=1;i<=tot;i++){
        for(int j=-mx;j<=mx;j++){
            //环上未相遇
            dp[i][j+a[i]+N][0]=(1ll*dp[i][j+a[i]+N][0]+dp[i-1][j+N][0])%mod;
            dp[i][j-a[i]+N][0]=(1ll*dp[i][j-a[i]+N][0]+dp[i-1][j+N][0])%mod;
            dp[i][j+N][0]=(dp[i][j+N][0]+dp[i-1][j+N][0])%mod;
            
            //环上点相遇,非当前环
            dp[i][j+a[i]+N][1]=(1ll*dp[i][j+a[i]+N][1]+dp[i-1][j+N][1])%mod;
            dp[i][j-a[i]+N][1]=(1ll*dp[i][j-a[i]+N][1]+dp[i-1][j+N][1])%mod;
            dp[i][j+N][1]=(1ll*dp[i][j+N][1]+dp[i-1][j+N][1])%mod;
            //环上边相遇,非当前环
            dp[i][j+a[i]+N][2]=(1ll*dp[i][j+a[i]+N][2]+dp[i-1][j+N][2])%mod;
            dp[i][j-a[i]+N][2]=(1ll*dp[i][j-a[i]+N][2]+dp[i-1][j+N][2])%mod;
            dp[i][j+N][2]=(1ll*dp[i][j+N][2]+dp[i-1][j+N][2])%mod;
            
            //相遇在当前环上点
            for(int k=1;k<a[i];k++)
                dp[i][j+k-(a[i]-k)+N][1]=(1ll*dp[i][j+k-(a[i]-k)+N][1]+2ll*dp[i-1][j+N][0])%mod;//两个颜色,两种方向
                
            //相遇在当前环上边
            for(int k=1;k<a[i]-1;k++)
                dp[i][j+k-(a[i]-1-k)+N][2]=(1ll*dp[i][j+k-(a[i]-1-k)+N][2]+2ll*dp[i-1][j+N][0])%mod;    
            
            //相遇1点
            dp[i][j+a[i]+N][3]=(1ll*dp[i][j+a[i]+N][3]+dp[i-1][j+N][3])%mod;
            dp[i][j-a[i]+N][3]=(1ll*dp[i][j-a[i]+N][3]+dp[i-1][j+N][3])%mod;
            
            //相遇1边,非当前环
            dp[i][j+a[i]+N][4]=(1ll*dp[i][j+a[i]+N][4]+dp[i-1][j+N][4])%mod;
            dp[i][j-a[i]+N][4]=(1ll*dp[i][j-a[i]+N][4]+dp[i-1][j+N][4])%mod;
            
            //相遇当前环1边
            //需要和dp[0]区分因为它没有不取的情况
            dp[i][j+a[i]-1+N][4]=(1ll*dp[i][j+a[i]-1+N][4]+2ll*dp[i-1][j+N][3])%mod;
            dp[i][j-a[i]+1+N][4]=(1ll*dp[i][j-a[i]+1+N][4]+2ll*dp[i-1][j+N][3])%mod;
            
        }
        mx+=a[i];
    }
    printf("%lld\n",(1ll*dp[tot][N][1]+dp[tot][N][2]+dp[tot][N][3]+dp[tot][N][4])%mod);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值