题意:
给你一个长度为n的数组a,你每次可以选择一个长度为2k的连续区间(k不定),将后k个数一一对应赋值给前k个数,问你最终要使得a中所有元素相等,需要至少多少次操作。
题解:
想错了…我以为是前赋值后或者后赋值前,这样情况就比较复杂了,暂时想到的方法是区间DP,还有一些奇奇怪怪的DP。但是2e5的范围不能接受,以后再想想怎么做,或许也会凭此出一道题目。
既然是后赋值前,那么很容易就知道,最后所有数一定和最后一个数相等,那么就从最后一个数每次扩张到前面即可。
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
int a[N];
int main()
{
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
int ans=0,now=n-1;
while(now>0){
if(a[now]!=a[n])
now=now-(n-now),ans++;
else
now--;
}
printf("%d\n",ans);
}
return 0;
}