Description
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
Input
第一行有一个正整数L(1 <= L <= 109),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1 <= S <= T <= 10,1 <= M <= 100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。
Output
只包括一个整数,表示青蛙过河最少需要踩到的石子数。
Sample Input
10
2 3 5
2 3 5 6 7
Sample Output
2
#include <stdio.h>
#include <string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int L ,temp,k;
int S,T,M,i,j,minn;
int stone[102],b[10000];
int Num[10000];
scanf("%ld",&L);
scanf("%d %d %d",&S,&T,&M);
for (i=0;i<M;i++)
scanf("%d",&stone[i]);
if (S!=T) //两种情况,一是最大距离不等于最小距离
{
sort(stone,stone+m);
stone[M] = L; //标记结束的位置,不能放循环外面
if (stone[0]>20)
{ //第一个石头在20之后,无论什么情况,前面需要过石头的数量都为0
k = stone[0]-20;
for(i=0;i<=M;i++)
stone[i] -= k;
}
for (i=1;i<=M;i++)
{
if (stone[i]-stone[i-1]>20)
{ //这个也是
k = stone[i]-stone[i-1]-20;
for(j=i;j<=M;j++)
stone[j] -= k;
}
}
memset(Num,125,sizeof(Num)); //这些一定不能放开头写
memset(b,0,sizeof(b));
for (i=0;i<M;i++) //标记石头在第几个位置
b[stone[i]] = 1;
Num[0] = 0;
minn=101;
for (i=S;i<stone[M]+T;i++) //考虑超出去的最远距离
{
for(j=S;j<=T&&i-j>=0;j++)
Num[i]=min(Num[i],Num[i-j]+b[i]);//我把我的代码放了进去,OK啦。
}
printf("%d",Num[stone[M]+T-1]);
}
else //第二种是最大距离等于最小距离,此时只有一种情况
{
minn= 0;
for (i=0;i<M;i++)
{
if (stone[i] % S == 0)
minn++;
}
printf("%d",minn);
}
return 0;
}