BFS 算法框架

本文介绍了BFS(广度优先搜索)算法的基本思想,使用队列作为核心数据结构,从起点开始逐步扩散寻找目标。在二叉树中,BFS用于计算从根节点到最接近的叶子节点的最小深度。通过不断将节点的子节点加入队列,直到找到叶子节点,记录步数即可得到最小深度。该方法虽然空间复杂度较高,但能确保找到最短路径。
摘要由CSDN通过智能技术生成

BFS 的核⼼思想应该不难理解的,就是把⼀些问题抽象成图,从⼀个点开始,向四周开始扩散。⼀般来说,我们写 BFS 算法都是⽤「队列」这种数据结构,每次将⼀个节点周围的所有节点加⼊队列。

BFS 相对 DFS 的最主要的区别是:BFS 找到的路径⼀定是最短的,但代价就是空间复杂度⽐ DFS ⼤很多

// 计算从起点 start 到终点 target 的最近距离
int BFS(Node start, Node target) {
	Queue<Node> q; // 核⼼数据结构
	Set<Node> visited; // 避免⾛回头路
	q.offer(start); // 将起点加⼊队列
	visited.add(start);
	int step = 0; // 记录扩散的步数
	
	while (q not empty) {
		int sz = q.size();
		/* 将当前队列中的所有节点向四周扩散 */
		for (int i = 0; i < sz; i++) {
			Node cur = q.poll();
			/* 划重点:这⾥判断是否到达终点 */
			if (cur is target)
				return step;
			/* 将 cur 的相邻节点加⼊队列 */
			for (Node x : cur.adj())
				if (x not in visited) {
					q.offer(x);
					visited.add(x);
				}
		}
		/* 划重点:更新步数在这⾥ */
		step++;
	}
}
二叉树的最小深度

⾸先明确⼀下起点 start 和终点 target 是什么,怎么判断到达了终点。

显然起点就是 root 根节点,终点就是最靠近根节点的那个「叶⼦节点」

套用框架

int minDepth(TreeNode root) {

	if (root == null) return 0;
	Queue<TreeNode> q = new LinkedList<>();
	q.offer(root);
	// root 本⾝就是⼀层,depth 初始化为 1
	int depth = 1;
	while (!q.isEmpty()) {
		int sz = q.size();
		/* 将当前队列中的所有节点向四周扩散 */
		for (int i = 0; i < sz; i++) {
			TreeNode cur = q.poll();
			/* 判断是否到达终点 */
			if (cur.left == null && cur.right == 		null)
				return depth;
			/* 将 cur 的相邻节点加⼊队列 */
			if (cur.left != null)
				q.offer(cur.left);
			if (cur.right != null)
				q.offer(cur.right);
		}
		/* 这⾥增加步数 */
		depth++;
	}
return depth;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值