BFS 的核⼼思想应该不难理解的,就是把⼀些问题抽象成图,从⼀个点开始,向四周开始扩散。⼀般来说,我们写 BFS 算法都是⽤「队列」这种数据结构,每次将⼀个节点周围的所有节点加⼊队列。
BFS 相对 DFS 的最主要的区别是:BFS 找到的路径⼀定是最短的,但代价就是空间复杂度⽐ DFS ⼤很多
// 计算从起点 start 到终点 target 的最近距离
int BFS(Node start, Node target) {
Queue<Node> q; // 核⼼数据结构
Set<Node> visited; // 避免⾛回头路
q.offer(start); // 将起点加⼊队列
visited.add(start);
int step = 0; // 记录扩散的步数
while (q not empty) {
int sz = q.size();
/* 将当前队列中的所有节点向四周扩散 */
for (int i = 0; i < sz; i++) {
Node cur = q.poll();
/* 划重点:这⾥判断是否到达终点 */
if (cur is target)
return step;
/* 将 cur 的相邻节点加⼊队列 */
for (Node x : cur.adj())
if (x not in visited) {
q.offer(x);
visited.add(x);
}
}
/* 划重点:更新步数在这⾥ */
step++;
}
}
二叉树的最小深度
⾸先明确⼀下起点 start 和终点 target 是什么,怎么判断到达了终点。
显然起点就是 root 根节点,终点就是最靠近根节点的那个「叶⼦节点」
套用框架
int minDepth(TreeNode root) {
if (root == null) return 0;
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
// root 本⾝就是⼀层,depth 初始化为 1
int depth = 1;
while (!q.isEmpty()) {
int sz = q.size();
/* 将当前队列中的所有节点向四周扩散 */
for (int i = 0; i < sz; i++) {
TreeNode cur = q.poll();
/* 判断是否到达终点 */
if (cur.left == null && cur.right == null)
return depth;
/* 将 cur 的相邻节点加⼊队列 */
if (cur.left != null)
q.offer(cur.left);
if (cur.right != null)
q.offer(cur.right);
}
/* 这⾥增加步数 */
depth++;
}
return depth;
}