NLP
圣诞老人家
这个作者很懒,什么都没留下…
展开
-
Learning beyond datasets: Knowledge Graph Augmented Neural Networks for Natural language Processing
概述:现在的机器学习算法的核心都是利用有关领域的有标签或者无标签的数据集,虽然已经存在迁移学习可以将一个领域的知识用于其他领域,但是这些方法还是扩展性比较差,并且只能应用于特定领域。所以能不能有一种训练方式,除了基于训练数据的学习之外,能够为模型注入一般的世界知识的方式进行训练?该论文主要是用世界知识(知识图谱三元组的形式)来增强模型。目标就是建立一种深度学习模型,该模型可以从世界知识中中提取...原创 2019-12-02 23:17:45 · 560 阅读 · 0 评论 -
依存分析 CKY算法
CKY:动态规划:具体算法(类似填表的方法):原创 2019-10-19 15:22:07 · 1299 阅读 · 0 评论 -
正则表达式在NLP中的基本应用
正则表达式在NLP中的作用1.将非结构化文档转化为结构化文本2.去噪#在python中使用re模块来实现正则表达式import re"""text_string='组合范畴语法(Combinatory categorial grammar,),是在AB演算基础上进行扩展而产生的范畴语法。' \ '从语法理论视角看,CCG是一种词汇形式化的方法。...原创 2019-10-12 23:12:16 · 1382 阅读 · 0 评论 -
RNN,LSTM与GRU详解
短时记忆RNN 会受到短时记忆的影响。如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后面的时间步。 因此,如果你正在尝试处理一段文本进行预测,RNN 可能从一开始就会遗漏重要信息。在反向传播期间,RNN 会面临梯度消失的问题。 梯度是用于更新神经网络的权重值,消失的梯度问题是当梯度随着时间的推移传播时梯度下降,如果梯度值变得非常小,就不会继续学习。梯度更新规则因此,...转载 2019-09-13 16:14:25 · 3434 阅读 · 0 评论