- 博客(172)
- 收藏
- 关注
原创 如何配置 TDengine 实现 S3 低成本存储?
S3 是一种可扩展且高可用的分布式存储解决方案,专门用于存储大量的非结构化数据对象。通过使用对象名(键值)进行索引,用户可以方便地访问和管理这些数据对象。这种架构使得 S3 能够灵活应对不断增长的数据存储需求,提供可靠的数据存储服务。需要注意的是,S3 上的对象一旦上传后便无法修改,且在读取对象时的速度通常较本地磁盘要慢。此外,各大云服务供应商通常会根据上传数据的大小、读取次数和读取的数据量来收取费用,这使得用户在使用 S3 存储时需要考虑成本管理。
2025-06-21 17:36:21
488
1
原创 使用 Telegraf 向 TDengine 写入数据
Telegraf 是一款十分流行的指标采集开源软件。在数据采集和平台监控系统中,Telegraf 可以采集多种组件的运行信息,而不需要自己手写脚本定时采集,降低数据获取的难度。只需要将 Telegraf 的输出配置增加指向 taosAdapter 对应的 url 并修改若干配置项即可将 Telegraf 的数据写入到 TDengine 中。将 Telegraf 的数据存在到 TDengine 中可以充分利用 TDengine 对时序数据的高效存储查询性能和集群处理能力。
2025-06-21 17:27:25
619
原创 流计算 TDengine vs InfluxDB:真“流” 与 “准流”?
与 InfluxDB 相比,TDengine 在流式计算的基础上,还具备强大的 ETL 能力——它不仅能处理时序数据,还能自动进行数据清洗与转换,帮助用户实现更加高效、灵活的数据处理。这一优势使得 TDengine 能在更多复杂的应用场景中提供卓越的性能,尤其是对于需要实时数据分析和高效数据处理的行业,提供了更为完善的解决方案。
2025-06-20 20:20:45
521
1
原创 TDengine 与开源可视化编程工具 Node-RED 集成
Node-RED是由 IBM 开发的基于 Node.js 的开源可视化编程工具,通过图形化界面组装连接各种节点,实现物联网设备、API 及在线服务的连接。同时支持多协议、跨平台,社区活跃,适用于智能家居、工业自动化等场景的事件驱动应用开发,其主要特点是低代码、可视化。TDengine 与 Node-RED 深度融合为工业 IoT 场景提供全栈式解决方案。通过 Node-RED 的 MQTT/OPC UA/Modbus 等协议节点,实现 PLC、传感器等设备毫秒级数据采集。
2025-06-20 18:55:02
1361
1
原创 TDengine 集群超能力:超越 InfluxDB 的水平扩展与开源优势
在时序数据管理领域,TDengine 的集群功能为企业提供了强大的水平扩展和高可用能力。相比于 InfluxDB 封闭的企业版集群,TDengine 的开源集群打破了软件授权的桎梏,让用户能够以更低成本应对数据爆发式增长的挑战。同时,TDengine 的分片、分区与虚拟节点技术,使其在高效数据管理和复杂查询性能上遥遥领先。对于那些追求系统扩展性、易维护性和高性价比的企业来说,TDengine 已成为更具吸引力的选择。关于 TDengine。
2025-06-19 21:22:55
597
原创 使用 Prometheus 访问 TDengine ---
Prometheus 是一款流行的开源监控告警系统。Prometheus 于 2016 年加入了 Cloud Native Computing Foundation(云原生云计算基金会,简称 CNCF),成为继 Kubernetes 之后的第二个托管项目,该项目拥有非常活跃的开发人员和用户社区。Prometheus 提供了和接口来利用其它数据库产品作为它的存储引擎。为了让 Prometheus 生态圈的用户能够利用 TDengine 的高效写入和查询,TDengine 也提供了对这两个接口的支持。
2025-06-19 21:15:08
660
原创 谈谈 TDengine 中的多级存储
结合这两大特性,TDengine 不仅强化了其作为企业级数据库的竞争力,也为用户在应对海量数据挑战时提供了强有力的支持,帮助他们实现数字化转型的目标。然而,在实际环境中,各磁盘的容量可能存在差异,或者虽然容量相同,但写入的数据量却不同,这会导致每个磁盘的可用空间不均衡,在实际进行选择时有可能会选择到一个剩余空间已经很小的磁盘。通过这些负载均衡和挂载点选择策略的优化,TDengine 多级负载功能得到了显著提升,不仅提高了数据写入的效率,还确保了存储资源的合理利用,为用户在海量数据处理时提供了强有力的支持。
2025-06-17 20:42:43
742
1
原创 Kafka 向 TDengine 写入数据
Kafka Connect 是的一个组件,用于使其它系统,比如数据库、云服务、文件系统等能方便地连接到 Kafka。数据既可以通过 Kafka Connect 从其它系统流向 Kafka, 也可以通过 Kafka Connect 从 Kafka 流向其它系统。从其它系统读数据的插件称为 Source Connector, 写数据到其它系统的插件称为 Sink Connector。
2025-06-17 20:28:20
989
1
原创 TDengine 时序数据库为焦耳科技打造节能新范式
为此,我司焦耳科技研发了楼宇智慧用能平台,该平台能够进行建筑能源的分类、分项、分区计量及实时采集,提供能耗统计、动态监测、设备管理和高负荷预警等功能,并具备在线统计和分析能耗及碳排放的能力。同时它还带有内建的缓存、流式计算、数据订阅等系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个高性能、分布式的物联网IoT、工业大数据平台。电能表的采集参数包括 9 个:A、B、C 相电压,A、B、C 相电流,功率、功率因数,以及电能。此外,为了满足用电分析需求,我们新增了分时用电时段标记字段 jfpg。
2025-06-16 21:12:42
791
原创 支持 TDengine 的数据库管理工具—qStudio
qStudio 是一款免费的多平台 SQL 数据分析工具,可以轻松浏览数据库中的表、变量、函数和配置设置。最新版本 qStudio 内嵌支持 TDengine。
2025-06-16 21:02:45
271
原创 车联网时序数据库如何高效接入 TDengine
现代新能源汽车,作为一种内部系统极为复杂的交通工具,配备了大量传感器、导航设备、应用软件,这些传感器产生的数据都需要上报到车联网平台当中。对于这些车辆的状态数据(如车速、发动机转速等)、位置数据(经纬度等)以及用户行为数据,车联网平台需要对它们进行实时/离线计算分析,从而为用户提升驾驶体验,提供安全保障,为厂商提供质量检测、功能优化,为交通管理部门提供流量、违章监测、甚至为城市规划提供帮助。
2025-06-15 17:48:00
928
原创 支持 TDengine 的数据库管理工具—DBeaver
DBeaver 是一款流行的跨平台数据库管理工具,方便开发者、数据库管理员、数据分析师等用户管理数据。DBeaver 从 23.1.1 版本开始内嵌支持 TDengine。既支持独立部署的 TDengine 集群也支持 TDengine Cloud。
2025-06-15 17:28:31
351
原创 TDengine 如何从 2.x 迁移到 3.0
taosX 通过 SQL 查询源集群数据,并把查询结果写入到目标数据库。具体实现上,taosX 以一个子表的一个时间段的数据作为查询的基本单元,将要迁移的数据分批写入目标数据库。history模式。指迁移指定时间范围内的数据,若不指定时间范围,则迁移截至创建任务前的所有数据。迁移完则任务停止。realtime模式。同步从任务创建时间起之后的数据,若不手动停止任务则任务会持续运行。both模式。先执行 history 模式,在执行 realtime 模式。每种迁移模式下,都可以指定是否迁移表结构。
2025-06-14 18:58:21
497
1
原创 百万级写入 vs 低成本存储, TDengine 如何扛住 AIOps?
然而,面对 2.x 的海量数据,导出速度和数量难以接受,同时还需保证生产系统正常运行。我们采用了数据双写策略:新上报的数据同时写入 2.x 和 3.x 两套集群,并通过后台程序逐步将 2.x 的历史数据读取并写入到 3.x 集群,最终实现了数据的平滑迁移。在不考虑 TDengine 对落盘数据进行压缩的情况下,那么每秒的写入速率是 30000/s * 0.5KB = 15000KB/s,约等于 14.65MB/s,这个数量级的磁盘 IO,哪怕是机械硬盘也很容易满足性能要求,所以只需要保证磁盘总量足够即可。
2025-06-13 20:40:09
803
1
原创 TDengine 基础功能——数据查询
相较于其他众多时序数据库和实时数据库,TDengine 的一个独特优势在于,自其首个版本发布之初便支持标准的 SQL 查询功能。这一特性极大地降低了用户在使用过程中的学习难度。本章将以智能电表的数据模型为例介绍如何在 TDengine 中运用 SQL 查询来处理时序数据。如果需要进一步了解 SQL 语法的细节和功能,建议参阅 TDengine 的官方文档。通过本章的学习,你将能够熟练掌握 TDengine 的 SQL 查询技巧,进而高效地对时序数据进行操作和分析。
2025-06-13 20:25:46
749
原创 使用 DeepSeek 为 TDengine 创建专属知识库
简单来说,就是它会脑补一些本来不存在的信息,只要被提问,它默认必须回答;此外,网络内容鱼龙混杂,既有专业文献,也有营销软文、谣言和垃圾信息,即便问题有明确答案,AI也无法判断信息真伪。我们已经构建好了 TDengine 文档手册的知识库~后续还打算添加一些用户案例等内容,让整个知识库更丰满,方便大家更好地学习和掌握 TDengine。通过在日常工作中不断使用这些工具后,我们总结出来,大模型在一些创意、灵感方面,表现不错,常常能给你惊喜;但在深度掌握一门知识,甚至写专业性论文时,则会造成一些困扰。
2025-06-12 20:52:26
1292
原创 TDengine 基础功能——数据写入
本章以智能电表的数据模型为例介绍如何在 TDengine 中使用 SQL 来写入、更新、删除时序数据。
2025-06-12 20:37:01
1303
1
原创 企业担心数据上云不安全,TDengine 云服务私有连接解决您的顾虑
通过上述四步简单的配置过程,现在你可以轻松地享受到由 TDengine Cloud 私有连接带来的诸多好处,包括但不限于更高的安全性、更低的成本以及更好的性能表现。立即采取行动吧!访问TDengine Cloud官网,注册并创建免费实例。按照TDengine Cloud 私网连接配置文档完成私有连接设置,体验前所未有的数据传输效率与安全性。
2025-06-11 21:22:03
886
1
原创 TDengine 基础功能——数据模型
为了清晰地阐述时序数据的基本概念,并为示例程序的编写提供便利,整个文档都将以智能电表为例,探讨时序数据的典型应用场景。设想有一种型号的智能电表,它能够采集电流、电压和相位这 3 个模拟量。此外,每块智能电表还具有位置和分组等静态属性。这些智能电表采集的数据示例如下表所示。
2025-06-11 20:58:58
1372
2
原创 TDengine 快速体验(云服务方式)
TDengine 可以通过安装包、Docker 镜像及云服务三种渠道快速体验 TDengine 的功能。TDengine Cloud 作为一个全托管的时序大数据云服务平台,致力于让用户迅速领略 TDengine 的强大功能。该平台不仅继承了 TDengine Enterprise 的核心功能特性,还充分发挥了 TDengine 的云原生优势。
2025-06-10 21:17:20
812
原创 TDengine 快速体验(Docker 镜像方式)
TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用安装包的方式快速体验。如果您希望为 TDengine 贡献代码或对内部技术实现感兴趣,请参考TDengine GitHub 主页下载源码构建和安装。
2025-06-10 21:09:05
1083
原创 TDengine 3.3.6.0 版本:TDgpt + 虚拟表 + JDBC 加速 8 大升级亮点
近日,TDengine 3.3.6.0 版本正式发布。除了此前已亮相的时序数据分析 AI 智能体 TDgpt,本次更新还带来了多个针对性能与易用性的重要增强:虚拟表全面上线,支持更灵活的一设备一表建模;JDBC 写入机制全新升级,单线程性能最高提升 60 倍;流计算支持 CONTINUOUS_WINDOW_CLOSE 模式、事件通知机制等关键能力,为实时处理打下更稳固的基础。本文为你整理了该版本的八大核心更新亮点,并附上社区版和企业版的详细新增功能。
2025-06-09 21:23:43
874
原创 什么是 TDengine 产品?
TDengine 是一款专为物联网、工业互联网等场景设计并优化的大数据平台,其核心模块是高性能、集群开源、云原生、极简的时序数据库。它能安全高效地将大量设备每天产生的高达 TB 甚至 PB 级的数据进行汇聚、存储、分析和分发,并提供 AI 智能体对数据进行预测与异常检测,提供实时的商业洞察。
2025-06-09 21:09:03
1176
原创 你的系统有这些问题时,试试 TDengine 边云协同
TDengine 边云协同解决方案凭借其高效的数据同步能力、灵活的配置机制和强大的实时处理性能,成为应对工业互联网场景下数据管理挑战的有力工具。通过统一的边云架构,时序数据库TDengine 能够在满足边缘侧实时处理需求的同时,将大量数据高效汇聚至云端,帮助企业在数据分析和决策上实现全局视角。希望本文能够帮助企业更好地理解边云协同技术的优势,并为其未来的数字化转型和智能化生产提供有价值的参考。标签物联网文章导航石油石化行业用时序数据库 TDengine 重构数据体系。
2025-06-08 16:34:30
676
1
原创 什么是时序数据?
时序数据,即时间序列数据(Time-Series Data),它们是一组按照时间发生先后顺序进行排列的序列数据。日常生活中,设备、传感器采集的数据就是时序数据,证券交易的记录也是时序数据。因此时序数据的处理并不陌生,特别在是工业自动化以及证券金融行业,专业的时序数据处理软件早已存在,比如工业领域的 PI System 以及金融行业的 KDB。这些时序数据是周期、准周期产生的,或事件触发产生的,有的采集频率高,有的采集频率低。
2025-06-08 16:19:31
1373
原创 TDengine 支持的平台汇总
2) 社区版仅支持主流操作系统的较新版本,包括 Ubuntu 18+/CentOS 7+/CentOS Stream/RedHat/Debian/CoreOS/FreeBSD/OpenSUSE/SUSE Linux/Fedora/macOS 等。目前 TDengine 的连接器可支持的平台广泛,目前包括:X64/X86/ARM64/ARM32/MIPS/LoongArch64(或 Loong64) 等硬件平台,以及 Linux/Win64/Win32/macOS 等开发环境。
2025-06-07 19:06:42
568
原创 TDengine 替换 Hadoop,彻底解决数据丢失问题 !
电力系统根据功能和安全等级划分为一区、二区、三区,主要用于电力监控和数据管理。其中一区:直接控制电力生产设备,如发电机组、变电站等,负责实时监控和控制,确保系统安全运行。二区:位于一区和三区之间,负责数据采集和预处理,但不直接控制设备,主要进行数据分析和监控。三区:用于高级数据分析和决策支持,如负荷预测、故障分析等,不直接参与实时控制,数据经过严格隔离以确保安全。简单来说,一区直接控制设备,二区处理数据,三区进行高级分析和决策。
2025-06-06 21:12:14
1204
原创 TDengine 开发指南——无模式写入
在物联网应用中,为了实现自动化管理、业务分析和设备监控等多种功能,通常需要采集大量的数据项。然而,由于应用逻辑的版本升级和设备自身的硬件调整等原因,数据采集项可能会频繁发生变化。为了应对这种挑战,TDengine 提供了无模式(schemaless)写入方式,旨在简化数据记录过程。采用无模式写入方式,用户无须预先创建超级表或子表,因为 TDengine 会根据实际写入的数据自动创建相应的存储结构。此外,在必要时,无模式写入方式还能自动添加必要的数据列或标签列,确保用户写入的数据能够被正确存储。
2025-06-06 20:57:43
1275
1
原创 TDengine + Kepware:设备数据快速接入,只需五步!
不管你部署的是单点现场系统,还是分布在多个工厂、多个站点、多个平台的复杂系统环境,都可以借助 TDengine + Kepware 的组合,实现高效的数据采集、统一的时序存储,以及稳定的实时查询。如果你是 TDengine 用户,正为设备接入发愁,也欢迎访问 Kepware 官网,了解它的工业连接能力。通过此次合作,Kepware 所具备的对海量工业设备的连接与数据采集能力,与 TDengine 高性能、可扩展的时序数据处理能力实现深度融合,为企业提供了一套统一、高效的工业数据存储与管理方案。
2025-06-05 20:12:35
830
原创 TDengine 开发指南—— UDF函数
在某些应用场景中,应用逻辑需要的查询功能无法直接使用内置函数来实现,TDengine 允许编写用户自定义函数(UDF),以便解决特殊应用场景中的使用需求。UDF 在集群中注册成功后,可以像系统内置函数一样在 SQL 中调用,就使用角度而言没有任何区别。UDF 分为标量函数和聚合函数。标量函数对每行数据输出一个值,如求绝对值(abs)、正弦函数(sin)、字符串拼接函数(concat)等。聚合函数对多行数据输出一个值,如求平均数(avg)、取最大值(max)等。
2025-06-05 19:54:46
1371
原创 TDengine 在电力行业如何使用 AI ?
从预测发电到发现异常,从电力调度到运维管理,TDgpt 正在让原本高门槛的时序数据分析变得更简单、更智能、更可落地。它不仅让 AI 更贴近业务现场,也帮助企业真正把数据“用起来”。如果你也在面对时序数据带来的挑战,或者希望用 AI 打开新的可能,TDgpt 值得一试
2025-06-04 20:35:28
985
原创 TDengine 开发指南——高效写入
本章内容将介绍如何发挥 TDengine 最大写入性能,通过原理解析到参数如何配置再到实际示例演示,完整描述如何达到高效写入。
2025-06-04 20:06:49
1512
原创 TDengine 的 AI 应用实战——运维异常检测
analyse.sh脚本用于在 TDengine 数据库上执行时间序列预测和异常检测分析,支持滑动窗口算法处理。时间序列预测 :使用 HoltWinters 等算法进行未来值预测。异常检测 :使用 k-Sigma 等算法识别数据异常点。自动窗口滑动 :支持自定义窗口大小和步长进行连续分析。
2025-06-03 19:45:59
1411
原创 TDengine 高级功能——流计算
在时序数据的处理中,经常要对原始数据进行清洗、预处理,再使用时序数据库进行长久的储存,而且经常还需要使用原始的时序数据通过计算生成新的时序数据。在传统的时序数据解决方案中,常常需要部署 Kafka、Flink 等流处理系统,而流处理系统的复杂性,带来了高昂的开发与运维成本。TDengine 的流计算引擎提供了实时处理写入的数据流的能力,使用 SQL 定义实时流变换,当数据被写入流的源表后,数据会被以定义的方式自动处理,并根据定义的触发模式向目的表推送结果。
2025-06-03 19:27:01
1164
1
原创 地图 APP 和购物 APP 是最急切上 AI的地方
这两天球拍线断了,想在附近找一家拉线的,我在地图 APP 上输出羽毛球,旁边一家都没有,又输入拉线,羽毛球拉线,拉线服务,也是附近一家都没有,我说这奇怪了,这大个北京,方圆五公里没有一个,这个不可能。如果把这个地图搜索交给 AI 来完成,他知道拉线服务会在体育用品店会有,就会给我推荐出来,让我精准的找到自己想要的。还有像购物 APP 也一样的问题,有时候你找东西可以把需求描述的很精准,但不知道找什么关键词,一样也无法找到你想要的,都赶快改改吧,把 AI 好好用上。
2025-06-02 16:29:29
193
2
原创 TDengine 的 AI 应用实战——电力需求预测
analyse.sh脚本用于在 TDengine 数据库上执行时间序列预测和异常检测分析,支持滑动窗口算法处理。时间序列预测 :使用 HoltWinters 等算法进行未来值预测。异常检测 :使用 k-Sigma 等算法识别数据异常点。自动窗口滑动 :支持自定义窗口大小和步长进行连续分析。
2025-06-02 15:51:50
1135
原创 TDengine 高级功能——读缓存
在物联网(IoT)和工业互联网(IIoT)大数据应用场景中,实时数据的价值往往远超历史数据。企业不仅需要数据处理系统具备高效的实时写入能力,更需要能快速获取设备的最新状态,或者对最新数据进行实时计算和分析。无论是工业设备的状态监控、车联网中的车辆位置追踪,还是智能仪表的实时读数,当前值都是业务运行中不可或缺的核心数据。这些数据直接关系到生产安全、运营效率以及用户体验。例如,在工业生产中,生产线设备的当前运行状态至关重要。
2025-06-02 15:32:01
1573
原创 TDengine 基于 TDgpt 的 AI 应用实战
analyse.sh脚本用于在 TDengine 数据库上执行时间序列预测和异常检测分析,支持滑动窗口算法处理。时间序列预测 :使用 HoltWinters 等算法进行未来值预测。异常检测 :使用 k-Sigma 等算法识别数据异常点。自动窗口滑动 :支持自定义窗口大小和步长进行连续分析。
2025-06-01 22:50:52
1179
原创 TDengine 集群容错与灾备
为了防止数据丢失、误删操作,TDengine 提供全面的数据备份、恢复、容错、异地数据实时同步等功能,以保证数据存储的安全。本节简要说明 TDengine 中的容错与灾备。
2025-06-01 22:30:46
1166
5
原创 TDenigne 集群可视化管理
为方便用户更高效地使用和管理 TDengine,TDengine 3.0 版本推出了一个全新的可视化组件 taosExplorer。这个组件旨在帮助用户在不熟悉 SQL 的情况下,也能轻松管理 TDengine 集群。通过 taosExplorer,用户可以轻松查看 TDengine 的运行状态、浏览数据、配置数据源、实现流计算和数据订阅等功能。此外,用户还可以利用 taosExplorer 进行数据的备份、复制和同步操作,以及配置用户的各种访问权限。这些功能极大地简化了数据库的使用过程,提高了用户体验。
2025-05-31 19:39:26
716
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人