数组入门练习:顺时针旋转的两种方法

这篇博客介绍了两种方法实现NC18题目中的顺时针旋转矩阵问题。方法一是按照标准模板,计算左上角子矩阵边界,然后进行四点交换;方法二是分解为右对角线翻转和竖直翻转两次操作。虽然方法二代码稍显复杂,但两种方法都有助于理解和记忆。
摘要由CSDN通过智能技术生成

NC18 顺时针旋转矩阵

方法一

标准的模板题啦,按照《数组入门指北》里面总结的套路:

  • 先计算出左上角子矩阵的边界:
    • 行下标的取值范围 0 ≤ r ≤ n 2 − 1 0 \le r \le \frac{n}{2}-1 0r2n1
    • 列下标的取值范围 0 ≤ c ≤ n − 1 2 0 \le c \le \frac{n-1}{2} 0c2n1

然后按照下述公式找出四个位置:
{ i ′ = j j ′ = n − i − 1 \begin{cases} i' = j \\ j' = n-i-1 \\ \end{cases} {i=jj=ni1

( i , j ) (i,j) (i,j) 为左上角子矩阵中的某个位置,则四个位置按顺时针顺序依次为:

  • ( i , j ) (i,j) (i,j)
  • ( j , n − i − 1 ) (j,n-i-1) (j,ni1)
  • ( n − i − 1 , n − j − 1 ) (n-i-1,n-j-1) (ni1,nj1)
  • ( n − j − 1 , n − ( n − i − 1 ) − 1 ) = ( n − j − 1 , x ) (n-j-1,n-(n-i-1)-1) = (n-j-1,x) (nj1,n(ni1)1)=(nj1,x)

最后,通过一个临时变量 t m p tmp tmp 和五次赋值,完成交换四个位置的值。代码如下:

class Solution {
public:
    vector<vector<int> > rotateMatrix(vector<vector<int> > arr, int n) {
        int col = (n-1)/2; 
        int row = n/2-1;
        for (int i = 0; i <= row; i++) {
            for (int j = 0; j <= col; j++) {
                int tmp = arr[i][j];
                arr[i][j] = arr[n-j-1][i];
                arr[n-j-1][i] = arr[n-i-1][n-j-1];
                arr[n-i-1][n-j-1] = arr[j][n-i-1];
                arr[j][n-i-1] = tmp;
            }
        }
        return arr;
    }
};

方法二

顺时针旋转还有一种做法——拆解为「一次右对角线翻转」加「一次竖直翻转」。

右对角线翻转:如左图示,沿虚线将上三角与下三角镜像翻转。

竖直翻转:如右图示,沿虚线将上半部分与下半部分镜像翻转。

我们从元素的位置变化上来验证一下,设一个元素的初始位置为 ( i , j ) (i,j) (i,j)

经过一次「右对角线翻转」后,位置变化为:
( i , j ) → ( n − j − 1 , n − i − 1 ) (i,j) → (n-j-1,n-i-1) (i,j)(nj1,ni1)

再经过一次「数值翻转后」,位置变化为:
( n − j − 1 , n − i − 1 ) → ( j , n − i − 1 ) (n-j-1,n-i-1)→(j,n-i-1) (nj1,ni1)(j,ni1)

不难发现,最终的位置 ( j , n − i − 1 ) (j,n-i-1) (j,ni1) 恰好等于方法一中总结的公式。

class Solution {
   public:
    vector<vector<int> > rotateMatrix(vector<vector<int> > arr, int n) {
        // 右对角线翻转
        for (int i = 0; i < n; i++) {
            for (int j = n-i-2; j >= 0; j--) {
                int tmp = arr[i][j];
                arr[i][j] = arr[n-j-1][n-i-1];
                arr[n-j-1][n-i-1] = tmp;
            }
        }
        // 竖直翻转
        for (int i = n/2-1; i >= 0; i--) {
            for (int j = 0; j < n; j++) {
                int tmp = arr[i][j];
                arr[i][j] = arr[n-i-1][j];
                arr[n-i-1][j] = tmp;
            }
        }
        return arr;
    }
};

两种方法的对比

方法一的代码更简洁,只有两个循环,五次复制。反观方法二,写了四个循环,且需要六次赋值。

显然方法一更好一点。不过两种方法都建议码一下,对照着更容易记忆和理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值