Java排序算法和实现
分类:
排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。
内排序有可以分为以下几类:
(1)、插入排序:直接插入排序、二分法插入排序、希尔排序。
(2)、选择排序:简单选择排序、堆排序。
(3)、交换排序:冒泡排序、快速排序。
(4)、归并排序
(5)、基数排序
总结:
一、稳定性:
稳定:冒泡排序、插入排序、归并排序和基数排序
不稳定:选择排序、快速排序、希尔排序、堆排序
二、平均时间复杂度
O(n^2):直接插入排序,简单选择排序,冒泡排序。
在数据规模较小时(9W内),直接插入排序,简单选择排序差不多。当数据较大时,冒泡排序算法的时间代价最高。性能为O(n^2)的算法基本上是相邻元素进行比较,基本上都是稳定的。
O(nlogn):快速排序,归并排序,希尔排序,堆排序。
其中,快排是最好的, 其次是归并和希尔,堆排序在数据量很大时效果明显。
三、排序算法的选择
1.数据规模较小
(1)待排序列基本序的情况下,可以选择直接插入排序;
(2)对稳定性不作要求宜用简单选择排序,对稳定性有要求宜用插入或冒泡
2.数据规模不是很大
(1)完全可以用内存空间,序列杂乱无序,对稳定性没有要求,快速排序,此时要付出log(N)的额外空间。
(2)序列本身可能有序,对稳定性有要求,空间允许下,宜用归并排序
3.数据规模很大
(1)对稳定性有求,则可考虑归并排序。
(2)对稳定性没要求,宜用堆排序
4.序列初始基本有序(正序),宜用直接插入,冒泡
实现:
1.直接插入排序(从后向前找到合适位置后插入)
(1)基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置(从后向前找到合适位置后),直到全部插入排序完为止。
(2)实现
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
//直接插入排序
for (int i = 1; i < a.length; i++) {
//待插入元素
int temp = a[i];
int j;
/*for (j = i-1; j>=0 && a[j]>temp; j--) {
//将大于temp的往后移动一位
a[j+1] = a[j];
}*/
for (j = i-1; j>=0; j--) {
//将大于temp的往后移动一位
if(a[j]>temp){
a[j+1] = a[j];
}else{
break;
}
}
a[j+1] = temp;
}
2.二分法插入排序
(1)基本思想:二分法插入排序的思想和直接插入一样,只是找合适的插入位置的方式不同,这里是按二分法找到合适的位置,可以减少比较的次数。
(2)
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
for (int i = 0; i < a.length; i++) {
int temp = a[i];
int left = 0;
int right = i-1;
int mid = 0;
while(left<=right){
mid = (left+right)/2;
if(temp<a[mid]){
right = mid-1;
}else{
left = mid+1;
}
}
for (int j = i-1; j >= left; j--) {
a[j+1] = a[j];
}
if(left != i){
a[left] = temp;
}
}
3.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
//冒泡排序
for (int i = 0; i < a.length; i++) {
for(int j = 0; j<a.length-i-1; j++){
//这里-i主要是每遍历一次都把最大的i个数沉到最底下去了,没有必要再替换了
if(a[j]>a[j+1]){
int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;
}
}
}
4.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实现
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
quickSort(a,0,a.length-1);
private static void quickSort(int[] a, int low, int high) {
if(low<high){ //如果不加这个判断递归会无法退出导致堆栈溢出异常
int middle = getMiddle(a,low,high);
quickSort(a, 0, middle-1);
quickSort(a, middle+1, high);
}
}
private static int getMiddle(int[] a, int low, int high) {
int temp = a[low];//基准元素
while(low<high){
//找到比基准元素小的元素位置
while(low<high && a[high]>=temp){
high--;
}
a[low] = a[high];
while(low<high && a[low]<=temp){
low++;
}
a[high] = a[low];
}
a[low] = temp;
return low;
}
5.归并排序
(1)基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实现
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
mergeSort(a,0,a.length-1);
}
private static void mergeSort(int[] a, int left, int right) {
if(left<right){
int middle = (left+right)/2;
//对左边进行递归
mergeSort(a, left, middle);
//对右边进行递归
mergeSort(a, middle+1, right);
//合并
merge(a,left,middle,right);
}
}
private static void merge(int[] a, int left, int middle, int right) {
int[] tmpArr = new int[a.length];
int mid = middle+1; //右边的起始位置
int tmp = left;
int third = left;
while(left<=middle && mid<=right){
//从两个数组中选取较小的数放入中间数组
if(a[left]<=a[mid]){
tmpArr[third++] = a[left++];
}else{
tmpArr[third++] = a[mid++];
}
}
//将剩余的部分放入中间数组
while(left<=middle){
tmpArr[third++] = a[left++];
}
while(mid<=right){
tmpArr[third++] = a[mid++];
}
//将中间数组复制回原数组
while(tmp<=right){
a[tmp] = tmpArr[tmp++];
}
}
6.堆排序
(1)基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实现
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i<arrayLength-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex<lastIndex){
//若果右子节点的值较大
if(data[biggerIndex]<data[biggerIndex+1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}