原文地址:http://www.cublog.cn/u3/105033/showart_2236378.html
一、问题描述
给定一个数t,以及n个整数,在这n个数中找到加和为t的所有组合,例如t=4,n=6这6个数为[4,3,2,2,1,1],这样输出就有4个不同的组合它们的加和为4:4,3+1,2+2,and 2+1+1。请设计一个高效算法实现这个需求。
二、解题思路
先将数据按从大到小进行排序,然后使用回溯法遍历所有可能。注意去掉重复的结果。
三、代码实现
- #include<iostream>
- using namespace std;
- int a[100]={4,3,2,2,1,1};
- bool x[100];//标记第i个元素是否已经使用
- int N=6;//元素个数
- int t=4;//目标和
- int sum;//当前和
- int cmp(const void *a,const void *b)
- {
- return *(int *)b-*(int *)a;
- }
- void backtrace(int n)
- {
- if(sum>t)//当前和大于t
- return ;
- if(sum==t)//当前和等于t,输出结果
- {
- for(int j=0;j<n;++j)
- {
- if(x[j])
- cout<<a[j]<<" ";
- }
- cout<<endl;
- return;
- }
- if(n==N)//超过n层
- return ;
- for(int i=n;i<N;++i)
- {
- if(x[i]==false)//未使用
- {
- x[i]=true;
- sum+=a[i];
- backtrace(i+1);
- x[i]=false;
- sum-=a[i];
- while(i<N-1 && a[i]==a[i+1])//跳过相同的
- i++;
- }
- }
- }
- int main()
- {
- sum=0;
- memset(x,0,sizeof(x));
- qsort(a,N,sizeof(a[0]),cmp);
- backtrace(0);
- return 0;
- }
问题延伸:分解任意一个正整数。