
Machine Learning
Machine Learning
Aba Eura
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
模式识别 | PRML Chapter 10 Approximate Inference
PRML Chapter 10 Approximate Inference10.1 Variational InferenceFor observed variable X={x1,...,xN}X=\{x_1,...,x_N\}X={x1,...,xN} and latent Z={z1,...,zN}Z=\{z_1,...,z_N\}Z={z1,...,zN}. Our proba...原创 2020-02-05 10:35:46 · 565 阅读 · 0 评论 -
模式识别 | PRML Chapter 9 Mixture Models and EM
PRML Chapter 9 Mixture Models and EM9.1 K-means ClusteringConsider the problem of identifying groups or clusters of data points in a multidimensional space.To describe the assignment of data points...原创 2020-02-05 10:34:43 · 492 阅读 · 0 评论 -
模式识别 | PRML Chapter 8 Graphical Models
PRML Chapter 8 Graphical Models8.1 Bayesian NetworksA specific graph can make probabilistic statements for a broad class of distributions. We can writh the joint distribution in the form:p(a,b,c)=p...原创 2020-02-02 20:52:10 · 383 阅读 · 0 评论 -
模式识别 | PRML Chapter 7 Sparse Kernel Machines
PRML Chapter 7 Sparse Kernel Machines7.1 Maximum Margin ClassifiersThe two-class classification problem using linear models of the form:y(x)=wTϕ(x)+by(x) = w^{T}\phi(x) + by(x)=wTϕ(x)+bThe maximum...原创 2020-02-02 20:51:09 · 559 阅读 · 0 评论 -
模式识别 | PRML Chapter 6 Kernel Methods
PRML Chapter 6 Kernel MethodsFor models which are based on a fixed nonlinear feature space mapping ϕ(x)\phi(x)ϕ(x), the kernel function is given by the relation:k(x,x′)=ϕ(x)Tϕ(x′)k(x, x^{'}) = \phi(...原创 2020-02-02 20:50:28 · 455 阅读 · 0 评论 -
模式识别 | PRML Chapter 5 Neural Networks
PRML Chapter 5 Neural Networks5.1 Feed-forward Network FunctionsA network with one hidden layer may be the form like this:yk(x,w)=σ(∑j=1Mwkj2h(∑i=1Dwji1xi+wj01)+wk02)y_{k}(x, w) = \sigma\left( \sum...原创 2020-02-02 20:49:49 · 520 阅读 · 0 评论 -
模式识别 | PRML Chapter 4 Linear Models for Classification
PRML Chapter 4 Linear Models for Classification4.1 Discriminant Functions4.1.1 Two classesThe simplest representation of a linear discriminant function can be expressed as:y(x)=wTx+w0y(x) = w^{T}x...原创 2020-02-02 20:48:38 · 454 阅读 · 0 评论 -
模式识别 | PRML Chapter 3 Linear Models for Regression
PRML Chapter 3 Linear Models for Regression3.1 Linear Basis Function ModelsThe simplest linear model for regression is the form:y(x,w)=w0+∑j=1M−1wjϕj(x)y(x, w) = w_{0} + \sum_{j=1}^{M-1}w_{j}\phi_{...原创 2020-02-02 20:47:57 · 446 阅读 · 0 评论 -
模式识别 | PRML Chapter 2 Probability Distributions
PRML Chapter 2 Probability Distributions2.1 Binary Variablesbernoulli distribution: Bern(x∣μ)=μx(1−μ)1−xBern(x | \mu) = \mu^{x}(1-\mu)^{1-x}Bern(x∣μ)=μx(1−μ)1−xbinomial distribution: Bin(m∣N,μ)=N!...原创 2020-02-02 20:45:56 · 320 阅读 · 0 评论 -
模式识别 | PRML Chapter 1 Introduction
PRML Chapter 1 Introduction1.1 Example:Polynomial Curve FittingFor a simple regression problem, our goal is to use the training set to predict new value t^\hat{t}t^ for input variable x^\hat{x}x^. T...原创 2020-02-02 20:45:12 · 580 阅读 · 0 评论 -
模式识别 | PRML概览
PRML全书概览PRML全称Pattern Recognition and Machine Learning,个人认为这是机器学习领域中最好的书籍之一,全书的风格非常Bayesian,作者试图在贝叶斯框架下解释每一种机器学习模型。阅读起来有一定难度,不适合作为机器学习入门教材。然而这本书提供的贝叶斯视角有助于我们更为立体全面理解一些经典模型。全书分为十四个章节,这里我尽可能简要概述每个章节的主...原创 2020-02-02 20:43:54 · 1815 阅读 · 0 评论 -
Python机器学习 | 基础教程归纳(上)
此系列文章提炼《Python机器学习基础教程》最核心要点第一章 引言一、熟悉任务1、确定回答的问题2、表示成机器学习的问题3、收集的数据是否足够表示这类问题4、提取了哪些特征,能否实现正确预测5、如何衡量成功6、解决方案与研究或商业产品有哪些是互相影响的二、必要的工具三、基本操作1、观察数据1)训练测试集划分X_train,X_test,y_train,y_test...原创 2019-04-08 08:51:09 · 623 阅读 · 0 评论 -
Python机器学习 | 基础教程归纳(下)
此系列文章提炼《Python机器学习基础教程》最核心要点第四章 数据表示与特征工程一、分类变量1、One-Hot编码(虚拟变量)1)检查字符串编码的分类数据(可能有表示不同但是含义相同的数据:man、male等)print(data.gender.value_counts())2)利用get_dummies函数自动变换字符串和分类的列data_dummies=pd.get_dum...原创 2019-04-08 09:11:24 · 608 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第十六章:强化学习
第十六章 强化学习此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…16.1 任务与奖赏通常使用马尔可夫决策过程(MDP)描述目的:找到能长期积累奖赏最大化策略长期奖赏方式T步积累奖赏:E[1T∑t=1Trt]\mathbb{E}[\frac 1 T\sum_{t=1}^Tr_t]E[T1∑t=1Trt]γ折扣积累奖赏:E[∑t=0+∞γtrt+1]\mathbb...原创 2019-04-07 20:33:26 · 1402 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第十五章:规则学习
第十五章 规则学习此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…15.1 基本概念规则:语义明确,能描述数据分布所隐含的客观规律或领域概念规则学习:从训练数据中学习一种能用于未见示例进行判别的规则优点:有更好的可解释性、有冲突可进行冲突消解15.2 序贯覆盖(分治策略)原因:规则学习的目标是产生一个能覆盖尽可能多的样例的规则集,最直接做法——序贯覆盖(逐条归纳)...原创 2019-04-07 20:11:24 · 1131 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第十四章:概率图模型
第十四章 概率图模型此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…14.1 隐马尔可夫模型1、概述机器学习最重要任务:根据一些已观察到的证据对感兴趣的未知变量进行估计和推测概率模型提供的描述框架——推断基于可观测变量推出未知变量的条件分布所关系变量集:Y;可观测变量集:O;其他变量集:R生成式模型:对联合分布P(Y,R,O)P(Y,R,O)P(Y,R,O)...原创 2019-04-04 21:23:22 · 1228 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第十三章:半监督学习
第十三章 半监督学习此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…13.1 未标记样本1、一些概念主动学习(active learning):使用尽量少的query获得经良好的性能半监督学习(semi-supervised learning):让学习器不依赖外界交互,自动利用未标记样本来提升学习性能2、一些假设聚类假设(cluster assumption):假设数据...原创 2019-04-04 18:40:15 · 1099 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第十二章:计算学习理论
第十二章 计算学习理论此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…12.1 基础知识1、概述目的:分析学习任务的困难本质,为学习算法提供理论保证)2、一些定义令h为从X到Y的映射,h的泛化误差:E(h;D)=Px∼D(h(x)≠y)E(h;\mathcal{D})=P_{\bm x\sim\mathcal{D}}(h(\bm x)≠y)E(h;D)=Px∼D(h(...原创 2019-04-03 19:15:19 · 1157 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第十一章:特征选择与稀疏学习
第十一章 特征选择与稀疏学习此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…11.1 子集搜索与评价1、一些概念特征/相关特征/无关特征冗余特征:所包含的信息能从其他特征中推演出来(多数时候不起作用,除去以减轻学习负担,但有时会降低学习任务的难度)2、特征选择的原因:减轻维数灾难,降低学习难度3、特征选择方法本质特征子集搜索机制(subset search)(贪心策...原创 2019-04-03 18:44:17 · 914 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第十章:降维与度量学习
第十章 降维与度量学习此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…10.1 k近邻学习1、描述常用的监督学习方法工作机制:给定测试集,基于某距离度量找出最靠近的k个样本,基于k个邻居的信息预测分类——投票法回归——平均法懒惰学习的代表2、懒惰学习与急切学习懒惰学习(lazy study):没有显式训练过程,仅把样本保存,训练时间无开销,待收到测试样本后再...原创 2019-04-02 11:15:28 · 1480 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第九章:聚类
第九章 聚类此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…9.1 聚类任务无监督学习:训练样本标记位置,学习揭示内在规律,分类任务等前驱过程将数据集划分为若干互不相交的子集(簇:cluster)9.2 性能度量1、概念内相似度(intra-cluster similarity)簇间相似度(inter-cluster similarity)2、指标外部指标...原创 2019-04-01 20:15:01 · 1098 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第八章:集成学习
第八章 集成学习8.1【个体与集成】1、集成学习的一般结构示意图个体学习器(individual learner)基学习器(base learner)同质(homogenous)集成:集成中只包含同种类型的个体学习器基学习器——同质集成中的个体学习器基学习算法(base learning algorithm)——相应的学习算法组建学习器(component learner)异质...原创 2019-03-20 09:14:19 · 920 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第七章:贝叶斯分类器
第七章 贝叶斯分类器7.1【贝叶斯决策理论】1、期望损失(expected loss):在样本x上的“条件风险”(conditional risk)具体算式:任务:最小化总体风险2、贝叶斯判定准则(Bayes decision rule)为最小化总体风险,只需在每个样本上选择那个能使条件风险R(c|x)最小的类别标记具体算式:h*(x):贝叶斯最优分类器(Bayes optimal...原创 2019-03-20 09:13:20 · 1346 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第六章:支持向量机
第六章 支持向量机6.1【间隔与支持向量】1、超平面(w,b)存在多个划分超平面将两类样本分开线性方程w:法向量,决定超平面方向b:位移项,决定超平面与原点之间的距离样本空间中任意点到超平面的距离2、支持向量(super vector)条件一:距离超平面最近的几个训练样本点条件二:使得右边任一式子的等号成立3、间隔(margin)两个一类支持向量到超平面的距离直和4、最大...原创 2019-03-20 09:12:27 · 845 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第五章:神经网络
第五章 神经网络5.1【神经元模型】1、基本概念神经元(neuron)模型是神经网络最基本的成分阈值(threshold),亦称bias2、M-P神经元模型图解激活函数(activation function)理想中的激活函数:阶跃函数将输入映射为输出值"0"或"1"典型的激活函数:Sigmoid函数(挤压函数 squashing function)将可能在激活范围内变化的输...原创 2019-03-20 09:11:27 · 851 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第四章:决策树
第四章 决策树4.1【基本流程】1、概要决策树组成一个根节点:包含样本全集若干个内部节点:对应于一个属性测试若干个叶节点:对应于决策结果决策树的目的:为了产生一棵泛化能力强,即处理未见示例能力强的决策树遵循的策略:分而治之2、决策时学习基本算法4.2【划分选择】:如何选择最优划分属性0、原则:提高结点的纯度(purity)——结点所包含的样本尽可能属于同一类别1、信息增益(...原创 2019-03-20 09:09:31 · 518 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第三章:线性模型
第三章 线性模型此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…3.1【基本形式】1、模型内容线性模型函数形式向量形式非线性模型:在线性模型的基础上引入层级结构或高维映射而得2、可解释性:w直观表达了各属性在预测中的重要性3.2【线性回归】1、定义:试图学的一个线性模型以尽可能准确地预测实值输出标记2、离散属性与序关系有序属性值:连续化无序属性值:one-h...原创 2019-03-20 09:07:13 · 501 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第二章:模型评估与选择
第二章:模型评估与选择此系列文章旨在提炼周志华《机器学习》的核心要点,不断完善中…2.1 经验误差与过拟合错误率与精度错误率:分类错误的样本占样本总数的比例:E=a/mE=a/mE=a/m精度:1−a/m1-a/m1−a/m误差:训练误差/经验误差(训练集);泛化误差(测试集)过拟合与欠拟合过拟合不可避免:PPP ≠ NPNPNP(算法多项式时间、问题NP-hard;不可完全通...原创 2019-03-20 09:06:14 · 429 阅读 · 0 评论 -
机器学习理论 | 周志华西瓜书 第一章:绪论
第一章 绪论1.1 引言机器学习研究:通过计算手段,利用经验来改善自身的性能模型:在本书中泛指从数据中学得的结果1.2 基本术语含义符号X\mathcal{X}X样本空间D\mathcal{D}D概率分布DDD数据样本(数据集)H\mathcal{H}H假设集L\mathfrak{L}L学习算法‖⋅‖p{‖\cdot‖}_...原创 2019-03-20 07:53:12 · 382 阅读 · 0 评论 -
Python机器学习 | scikit-learn算法与模型全总结
关于sklearn的常用算法的总结我自己又重新补充了一些,这里帮大家汇总一下(想进一步探索可以去sklearn的官网)原创 2018-05-29 16:11:09 · 524 阅读 · 0 评论