本基于java+路径规划+CS架构实现的A星算法求解最短路径问题演示程序,系统采用多层C/S软件架构,采用java 编程语言开发技术实现A*算法求解地图中的最短路径问题,实时获取计算用户在地图中设置的障碍点信息,计算可以完成路径规划的最短路径,提供完分析最短路径长度,重置地图,查看程序运行报告等功能,并且在程序运行界面提供完善的规则说明等。
一、程序设计
本次基于java+路径规划+CS架构实现的A星算法求解最短路径问题演示程序,主要内容涉及:
主要功能模块:地图模拟、A算法实现、障碍点设置、路近计算,项目报告,长度计算、报告文件等等
主要包含技术:Java编程语言,java2D,多线程,JavaSwing,CS架构编程
主要包含算法:路径规划算法,A算法等
二、效果实现
障碍设置
路径规划
其他效果省略
三、核心代码
1.障碍设置
本系统障碍设置模块,主要采用java2D在地图中监听用户的点击操作,设置对应的点击位置变换颜色,标识当前位置为障碍点,纳入后续的最短路径规划计算中。
private class ChangeColor implements MouseListener {
int i, j;
private JPanel jp;
public ChangeColor(JPanel jp, int i, int j) {
this.jp = jp;
this.i = i;
this.j = j;
}
public void mousePressed(MouseEvent e) {
if (jp.getBackground() == Color.WHITE) {
jp.setBackground(Color.BLACK);
pathMap.map[i][j].setreachable(false);
} else {
jp.setBackground(Color.WHITE);
pathMap.map[i][j].setreachable(true);
}
}
public void mouseEntered(MouseEvent e) {
}
public void mouseClicked(MouseEvent e) {
}
public void mouseReleased(MouseEvent e) {
}
public void mouseExited(MouseEvent e) {
}
}
2.A算法路径规划
本系统主要采用A算法实现在充满障碍点的地图中完成最短路径的规划字段,主要核心算法实现如下。
private ArrayList<PathNode> open = new ArrayList<PathNode>();
private ArrayList<PathNode> close = new ArrayList<PathNode>();
public double CaculategValue(PathNode pathNode) {
if (pathNode.getFatherNode() == null) {
pathNode.setgValue(0);
} else {
pathNode.setgValue(pathNode.getFatherNode().getgValue() + 40);
}
return pathNode.getgValue();
}
public double CaculatehValue(PathNode pathNode, PathNode endNode) {
pathNode.sethValue((Math.abs(pathNode.getX() - endNode.getX()) + Math.abs(pathNode.getY() - endNode.getY())));
return pathNode.gethValue();
}
public double CaculatefValue(PathNode pathNode) {
pathNode.setfValue();
return pathNode.getfValue();
}
public void addOpenList(PathNode pathNode, PathMap pathMap) {
int i = pathNode.getNumber() / 10;
int j = pathNode.getNumber() % 10;
for (int x = -1; x < 2; x++) {
for (int y = -1; y < 2; y++) {
if ((Math.abs(x) + Math.abs(y)) == 1) {
if ((i + x) >= 0 && (i + x) < 10 && (j + y) >= 0 && (y + j) < 10) {
if (pathMap.map[i + x][j + y].isReachable() && !close.contains(pathMap.map[i + x][j + y])) {
if (open.contains(pathMap.map[i + x][j + y])) {
double gValue = pathNode.getgValue() + 40;
if (gValue < pathMap.map[i + x][j + y].getgValue()) {
pathMap.map[i + x][j + y].setFatherNode(pathNode);
pathMap.map[i + x][j + y].setgValue(gValue);
;
pathMap.map[i + x][j + y].setfValue();
}
} else {
pathMap.map[i + x][j + y].setFatherNode(pathNode);
CaculategValue(pathMap.map[i + x][j + y]);
CaculatehValue(pathMap.map[i + x][j + y], pathMap.map[9][9]);
CaculatefValue(pathMap.map[i + x][j + y]);
open.add(pathMap.map[i + x][j + y]);
}
}
}
}
}
}
}