中序后序,中序先序求二叉树

用后序,中序求二叉树

#include<bits/stdc++.h>
using namespace std;
int n;
int a[105],b[105];
map<int,int>L,R;
int build(int la,int ra,int lb,int rb){//la,ra,lb,rb是两个数组的左右标记
    if(la>ra)
        return 0;
    int root=a[ra];//每个子树的根必然是a[ra]
    int i;
    for(i=lb;i<=rb&&b[i]!=root;i++){}//再在中序中找到这个数的位置
    if(i<=rb){//两段分治,左右建树,都用到了rb-i这个长度
        L[root]=build(la,ra-rb+i-1,lb,i-1);
        R[root]=build(ra-rb+i,ra-1,i+1,rb);
    }
    return root;
}
queue<int>q;
void bfs(int x){
    int cnt=0;
    q.push(x);
    while(!q.empty()){
        int temp=q.front();
        if(cnt!=0)
            cout<<" ";
        cout<<temp;
        cnt++;
        q.pop();
        if(L[temp])
            q.push(L[temp]);
        if(R[temp])
            q.push(R[temp]);
    }


}

int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)//读入后序遍历
        cin>>a[i];
    for(int i=1;i<=n;i++)//读入中序遍历
        cin>>b[i];
    int root=build(1,n,1,n);
    bfs(root);
    return 0;
}


用先序,中序求二叉树,大同小异。

#include<bits/stdc++.h>
using namespace std;
int n;
int a[105],b[105];
map<int,int>L,R;
int build(int la,int ra,int lb,int rb){
    if(lb>rb)
        return 0;
    int root=a[la];
    int i;
    for(i=lb;i<=rb&&b[i]!=root;i++){};
    if(i<=rb){//长度是i-lb
        L[root]=build(la+1,la+i-lb,lb,i-1);
        R[root]=build(la+i-lb+1,ra,i+1,rb);
    }
    return root;
}
queue<int>q;
void bfs(int x){
    int cnt=0;
    q.push(x);
    while(!q.empty()){
        int temp=q.front();
        if(cnt!=0)
            cout<<" ";
        cout<<temp;
        cnt++;
        q.pop();
        if(L[temp])
            q.push(L[temp]);
        if(R[temp])
            q.push(R[temp]);
    }
}

int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)//读入前序遍历
        cin>>a[i];
    for(int i=1;i<=n;i++)//读入后序遍历
        cin>>b[i];
    int root=build(1,n,1,n);
    bfs(root);
    return 0;
}

非常适合用来练手。没事删了多打两遍


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值