敌兵布阵 HDU - 1166 (前缀和 + 线段树)

题目:

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。 
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的. 

Input

第一行一个整数T,表示有T组数据。 
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。 
接下来每行有一条命令,命令有4种形式: 
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30) 
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30); 
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数; 
(4)End 表示结束,这条命令在每组数据最后出现; 
每组数据最多有40000条命令 

Output

对第i组数据,首先输出“Case i:”和回车, 
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。 

Sample Input

1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End 

Sample Output

Case 1:
6
33
59

思路:

因为题目中给出的数据范围比较大,如果每一次都是对于区间[a,b]进行计算,那么肯定会超时,所以不能直接暴力;

那么我们就可以用到了前缀和对数组进行维护,这样就不用大量的操作数组,对数组的值进行更改,效率会大大提升;

当然了,这道题也是经典的线段树模板题。和适合线段树新手练习,这道题涉及的操作也是线段树的基本操作。

代码如下:

(1)前缀和:这道题的数据不够严谨,没有卡下前缀和这种结果;

使用前缀和可以在900多毫秒出结果,算是一种方法吧。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

const int N=50010;

int t,n,sum;
int x,y;
int a[N],s[N];
char q[100];

void init()//求前缀和;
{
    for(int i=1; i<=n; i++)
    {
        s[i]=s[i-1]+a[i];
    }
    return ;
}

void updata(int l,int ss)//前缀和的更改维护;
{
    for(int i=l; i<=n; i++)
    {
        s[i]+=ss;
    }
    return ;
}

void query(int l,int r)//求区间[l,r]的和;
{
    printf("%d\n",s[r]-s[l-1]);
    return ;
}

int main()
{
    scanf("%d",&t);
    sum=1;
    while(t--)
    {
        scanf("%d",&n);
        memset(a,0,sizeof a);
        memset(s,0,sizeof s);
        printf("Case %d:\n",sum++);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
        }
        init();//求前缀和;
        while(1)
        {
            scanf("%s",q);
            if(strcmp(q,"End")==0)
                break;
            scanf("%d%d",&x,&y);
            if(strcmp(q,"Add")==0)
                updata(x,y);
            else if(strcmp(q,"Sub")==0)
                updata(x,-y);
            else if(strcmp(q,"Query")==0)
            {
                query(x,y);
            }
        }
    }
    return 0;
}

(2)线段树:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
#define MID(a,b) (a+((b-a)>>1))

const int N=50005;

struct node//线段树的节点;
{
    int lft;//左节点的编号;
    int rht;//右节点的编号;
    int sum;//区间[lft,rht]的值;
    int mid()//中间点,即父亲节点的位置;
    {
        return MID(lft,rht);
    }
};

int y[N],n;

struct Segtree
{
    node tree[N*4];//存储线段树;
    //建立线段树;  (1,n,1)
    void build(int lft,int rht,int ind)//
    {
        tree[ind].lft=lft;
        tree[ind].rht=rht;
        tree[ind].sum=0;
        if(lft==rht)
            tree[ind].sum=y[lft];
        else
        {
            int mid=tree[ind].mid();
            build(lft,mid,LL(ind));
            build(mid+1,rht,RR(ind));
            tree[ind].sum=tree[LL(ind)].sum+tree[RR(ind)].sum;
        }
    }
    //对数值进行更新;
    void updata(int pos,int ind,int valu)
    {
        if(tree[ind].lft==tree[ind].rht)//到了最后的节点;
            tree[ind].sum+=valu;
        else//否则依次维护;
        {
            int mid=tree[ind].mid();
            if(pos<=mid)
                updata(pos,LL(ind),valu);
            else
                updata(pos,RR(ind),valu);
            tree[ind].sum=tree[LL(ind)].sum+tree[RR(ind)].sum;
        }
    }
    //对数值进行查询;
    int query(int st,int ed,int ind)
    {
        int lft=tree[ind].lft;
        int rht=tree[ind].rht;
        if(st<=lft&&rht<=ed)//如果这个区间完全被包含了,
            return tree[ind].sum;//那么直接返回这个节点的sum值;
        else//超出这个区间
        {
            int mid=tree[ind].mid();
            int sum1=0,sum2=0;
            //分成两个部分;
            if(st<=mid)//左边的一部分
                sum1=query(st,ed,LL(ind));
            if(ed>mid)//右边的一部分;
                sum2=query(st,ed,RR(ind));
            return sum1+sum2;
        }
    }
} seg;

int main()
{
    int t;
    int t_cnt=1;//计数;
    scanf("%d",&t);
    while(t--)
    {
        int a,b;
        char str[10];
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%d",&y[i]);
        seg.build(1,n,1);//建立一个线段树;
        printf("Case %d:\n",t_cnt++);
        while(1)
        {
            scanf("%s",str);
            if(strcmp(str,"End")==0)//结束;
                break;
            scanf("%d%d",&a,&b);
            if(strcmp(str,"Add")==0)
                seg.updata(a,1,b);//数据更新;
            else if(strcmp(str,"Sub")==0)
                seg.updata(a,1,-b);//数据更新;
            else
                printf("%d\n",seg.query(a,b,1));//数据查询;
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值