题目:
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59
思路:
因为题目中给出的数据范围比较大,如果每一次都是对于区间[a,b]进行计算,那么肯定会超时,所以不能直接暴力;
那么我们就可以用到了前缀和对数组进行维护,这样就不用大量的操作数组,对数组的值进行更改,效率会大大提升;
当然了,这道题也是经典的线段树模板题。和适合线段树新手练习,这道题涉及的操作也是线段树的基本操作。
代码如下:
(1)前缀和:这道题的数据不够严谨,没有卡下前缀和这种结果;
使用前缀和可以在900多毫秒出结果,算是一种方法吧。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int N=50010;
int t,n,sum;
int x,y;
int a[N],s[N];
char q[100];
void init()//求前缀和;
{
for(int i=1; i<=n; i++)
{
s[i]=s[i-1]+a[i];
}
return ;
}
void updata(int l,int ss)//前缀和的更改维护;
{
for(int i=l; i<=n; i++)
{
s[i]+=ss;
}
return ;
}
void query(int l,int r)//求区间[l,r]的和;
{
printf("%d\n",s[r]-s[l-1]);
return ;
}
int main()
{
scanf("%d",&t);
sum=1;
while(t--)
{
scanf("%d",&n);
memset(a,0,sizeof a);
memset(s,0,sizeof s);
printf("Case %d:\n",sum++);
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
}
init();//求前缀和;
while(1)
{
scanf("%s",q);
if(strcmp(q,"End")==0)
break;
scanf("%d%d",&x,&y);
if(strcmp(q,"Add")==0)
updata(x,y);
else if(strcmp(q,"Sub")==0)
updata(x,-y);
else if(strcmp(q,"Query")==0)
{
query(x,y);
}
}
}
return 0;
}
(2)线段树:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
#define MID(a,b) (a+((b-a)>>1))
const int N=50005;
struct node//线段树的节点;
{
int lft;//左节点的编号;
int rht;//右节点的编号;
int sum;//区间[lft,rht]的值;
int mid()//中间点,即父亲节点的位置;
{
return MID(lft,rht);
}
};
int y[N],n;
struct Segtree
{
node tree[N*4];//存储线段树;
//建立线段树; (1,n,1)
void build(int lft,int rht,int ind)//
{
tree[ind].lft=lft;
tree[ind].rht=rht;
tree[ind].sum=0;
if(lft==rht)
tree[ind].sum=y[lft];
else
{
int mid=tree[ind].mid();
build(lft,mid,LL(ind));
build(mid+1,rht,RR(ind));
tree[ind].sum=tree[LL(ind)].sum+tree[RR(ind)].sum;
}
}
//对数值进行更新;
void updata(int pos,int ind,int valu)
{
if(tree[ind].lft==tree[ind].rht)//到了最后的节点;
tree[ind].sum+=valu;
else//否则依次维护;
{
int mid=tree[ind].mid();
if(pos<=mid)
updata(pos,LL(ind),valu);
else
updata(pos,RR(ind),valu);
tree[ind].sum=tree[LL(ind)].sum+tree[RR(ind)].sum;
}
}
//对数值进行查询;
int query(int st,int ed,int ind)
{
int lft=tree[ind].lft;
int rht=tree[ind].rht;
if(st<=lft&&rht<=ed)//如果这个区间完全被包含了,
return tree[ind].sum;//那么直接返回这个节点的sum值;
else//超出这个区间
{
int mid=tree[ind].mid();
int sum1=0,sum2=0;
//分成两个部分;
if(st<=mid)//左边的一部分
sum1=query(st,ed,LL(ind));
if(ed>mid)//右边的一部分;
sum2=query(st,ed,RR(ind));
return sum1+sum2;
}
}
} seg;
int main()
{
int t;
int t_cnt=1;//计数;
scanf("%d",&t);
while(t--)
{
int a,b;
char str[10];
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&y[i]);
seg.build(1,n,1);//建立一个线段树;
printf("Case %d:\n",t_cnt++);
while(1)
{
scanf("%s",str);
if(strcmp(str,"End")==0)//结束;
break;
scanf("%d%d",&a,&b);
if(strcmp(str,"Add")==0)
seg.updata(a,1,b);//数据更新;
else if(strcmp(str,"Sub")==0)
seg.updata(a,1,-b);//数据更新;
else
printf("%d\n",seg.query(a,b,1));//数据查询;
}
}
return 0;
}