题目:
小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。
不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。
为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?
输入格式
第一行包含一个整数N。
以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。
对于30%的数据,1 <= N <= 1000
对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N
输入保证合法。
输出格式
按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。
样例输入
5
1 2
3 1
2 4
2 5
5 3
样例输出
1 2 3 5
思路:
这道题,因为电脑直接形成了环路,只要能够找到两台电脑是相邻的关系,那么把这两台电脑作为这个环路的起点和终点进行搜索,那么肯定可以找到这个环路。
需要注意,数据太大,很容易就超时了,所以在电脑连接时,要用一个vector容器进行存储,不能用二维数组进行存储;当然了,在使用并查集是要记得路径的压缩,不然也是超时。
代码如下:
#include<stdio.h>
#include<vector>
#include<string.h>
#include<algorithm>
using namespace std;
int n;//电脑的数量;
int a,b;
int s,e;//记录在环路上的两台电脑;
int f[100010];//并查集中记录boos节点;
int book[100010];//深搜中用来标记;
vector<int>q[200010];//存储和电脑i相连的电脑;
int flag;
int tt;
int qq;
void init()//初始化;
{
for(int i=0; i<=n; i++)
{
f[i]=i;//自己的boos是自己;
}
}
int getf(int v)//找boos;
{
if(f[v]==v)
return v;
else
return f[v]=getf(f[v]);//记得压缩,不然会超时;
}
void merge(int u,int v)//合并;
{
int t1=getf(u);
int t2=getf(v);
if(t1==t2)//代表已经有环路了,那么记下这两个点即可;
{
qq=1;//找到了环路上的两个点就可以开始搜索了,没必要再判断下去了;
s=u;//因为并查集就是为了找出来环路上的一个起点和终点;
e=v;//目的达到了就可以结束了;
}
else
{
f[t1]=t2;//合并,
q[u].push_back(v);//记录下电脑的连接情况;
q[v].push_back(u);
}
return ;
}
void dfs(int x)
{
if(flag==1)//已经输出了;
return;
if(x==e)//到了末尾电脑;
{
for(int i=1; i<=n; i++)
{
if(book[i]==1)//在环路上;
{
if(tt==0)//控制输出格式;
{
printf("%d",i);
tt=1;
}
else
printf(" %d",i);
}
}
printf("\n");
flag=1;
return ;
}
for(int i=0; i<q[x].size(); i++)//搜索;
{
int temp=q[x][i];
if(book[temp]==0)
{
book[temp]=1;
dfs(temp);
book[temp]=0;
}
}
return ;
}
int main()
{
while(~scanf("%d",&n))
{
init();//初始化;
qq=0;
for(int i=0; i<n; i++)
{
scanf("%d%d",&a,&b);
if(qq==0)//找到一对起点和终点后就可以不用使用并查集了,因为目的已经达到了;
merge(a,b);
}
flag=0;
tt=0;
memset(book,0,sizeof book);
book[s]=1;
dfs(s);
}
return 0;
}