利用ENVI将HDF文件转为TIF文件构建Basefile

文章描述了如何使用ENVI处理HDF文件,包括打开HDF4格式文件,查看和编辑元数据,添加空间参考系。如果在Addspatialreference步骤遇到问题,建议将文件转换为TIF格式后再操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目的:利用HDF文件构建Geobase file
基于ENVI和HDF文件
Add spatial reference后若出现问题,则先将文件输出为TIF文件再Add spatial reference
Step1:在ENVI中以HDF4格式打开HDF文件
在这里插入图片描述
Step2:选中该图层加载进ENVI
在这里插入图片描述

Step3:View Metadata 查看坐标信息
在这里插入图片描述

Step4: Edit Metadata 编辑信息
在这里插入图片描述

Step5:Add spatial reference,然后根据需要选择坐标系,并填写对应信息
在这里插入图片描述

Step6: 另存为TIF文件输出

在这里插入图片描述

### 如何使用 Python 的 `h5py` 库创建 HDF 文件 HDF5 是一种高效的文件格式,适用于存储大规模科学数据。通过 Python 的 `h5py` 库,可以轻松创建和管理 HDF5 文件。以下是关于如何使用 `h5py` 创建 HDF5 文件的具体方法。 #### 使用 `h5py.File()` 方法创建新文件 要创建一个新的 HDF5 文件,可以通过调用 `h5py.File()` 并指定模式 `'w'` 来实现。此模式表示写入模式,如果文件已存在,则会覆盖原有文件[^1]。 ```python import h5py # 创建新的 HDF5 文件 file_path = "example.hdf5" f = h5py.File(file_path, 'w') ``` #### 添加数据集到 HDF 文件 一旦文件被成功创建,就可以向其中添加数据集。数据集类似于 NumPy 数组,具有固定的形状和数据类型。下面是一个示例: ```python import numpy as np # 创建一个随机数组并将其保存为数据集 data = np.random.rand(100, 100) # 向文件中添加数据集 dataset_name = "random_data" dset = f.create_dataset(dataset_name, data=data.shape, dtype='f') # 填充数据集的内容 dset[...] = data ``` #### 添加分组 (Groups) 组织数据结构 HDF5 支持层次化的数据组织方式,即可以在文件内部创建分组来更好地分类和管理数据。以下是如何创建分组并将数据集放入特定分组中的例子: ```python # 创建一个名为 "group1" 的分组 group = f.create_group("group1") # 在分组内创建数据集 sub_dset = group.create_dataset("sub_random", data=np.random.randn(50)) ``` #### 关闭文件连接 完成所有操作后,记得关闭文件以释放资源。 ```python f.close() ``` 以上过程展示了如何利用 `h5py` 创建 HDF5 文件以及基本的操作流程[^3]。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值