N3 中文文本分类

前言

前面学习了相关自然语言编码,这周进行相关实战

导入依赖库和设置设备

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings

warnings.filterwarnings("ignore")  # 忽略警告
# win10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

这段代码导入了必要的库并设置了设备(GPU或CPU)。

数据预处理和词汇表构建

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torchtext.datasets import AG_NEWS

train_iter = AG_NEWS(split='train')
tokenizer = get_tokenizer('basic_english')  # 返回分词器函数

def yield_tokens(data_iter):
    for _, text in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])  # 设置默认索引,如果找不到单词,则会选择默认索引

这里使用torchtext库加载AG_NEWS数据集,定义了一个分词器并构建了词汇表。

数据处理管道

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1
text_pipeline('here is the an example')

定义了两个数据处理管道:text_pipeline用于将文本转化为词汇表中的索引序列,label_pipeline用于将标签转化为整数索引。

定义数据加载器

from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]

    for (_label, _text) in batch:
        label_list.append(label_pipeline(_label))
        processed_text = torch.tensor(text_pipeline<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值