是Josephus问题的变形
Josephus问题
1. 问题的由来
Josephus问题是以10世纪的著名历史学家Flavius Josephus命名的. 据说, Josephus
如果没有数学才能, 他就不会在活着的时候出名! 在犹太人和古罗马人战争期间, 他是
陷如罗马人陷阱的41个犹太反抗者之一. 反抗者宁死不做俘虏, 他们决定围成一个圆圈,
且围绕圆圈来进行, 杀死所有第3个剩下的人直到没有一个人留下. 但是, Josephus和一个
不告发的同谋者感到自杀是愚蠢的行为, 所以以他快速计算出在此恶性循环中他和他的
朋友应该站的地方. 因此, 他们活了下来...
2. 平凡的解法
我们用一个循环连表来模拟他们的行为。为了省事,我直接找了一个一个java代码:
class Josephus
{
static class Node
{
int val; Node next;
Node(int v) { val = v; }
}
public static void main(String[] args)
{
int N = Integer.parseInt(args[0]);
int M = Integer.parseInt(args[1]);
Node t = new Node(1);
Node x = t;
for (int i = 2; i <= N; x = (x.next=new Node(i++)));
x.next = t;
while (x != x.next)
{
for (int i = 1; i < M; i++) x = x.next;
x.next = x.next.next;
}
Out.println( "Survivor is " + x.val);
}
}
3. 递归公式
喜欢这个问题的朋友肯定不满足上面的方法,很想知道更简单的算法。
其实Josephus问题中的序列确实存在递归的公式。但是递归公式的推导
比较麻烦,我就直接给出结果。如果想了解详细过程可以查阅相关资料。
假设有n个人,每次杀第m个人,则k为第k个被杀死的人...
j1: x <- k*m
j2: if(x <= n) 输入结果x
j3: x <- floor((m*(x-n)-1) / (m-1)), goto j1
以C语言实现如下:
unsigned josephus(unsigned m, unsigned n, unsigned k)
{
unsigned x = km;
while(x <= n) x = (m*(x-n)-1)/(m-1);
return x;
}
4. m为2的情况
现在考虑一种m为2的特殊情形。
这时候有更简单的递归公式:
x = 2*n + 1 - (2*n+1-2*k)*2^log2((2*n)/(2*n+1-2*k))
其中,log2((2*n)/(2*n+1-2*k))为计算(2*n)/(2*n+1-2*k)以2为底的对数,
结果向下取整数。
联系2^log2((2*n)/(2*n+1-2*k))整体,可以理解为将(2*n)/(2*n+1-2*k)向下
舍取到2的幂。有些地方把这中运算称为地板函数,我们定义为flp2,下面是
C语言的实现:
unsigned flp2(unsigned x)
{
unsigned y;
do { y = x; x &= x-1; }while(x);
return y;
}
其中x &= x-1;语句是每次把x二进制最右边的1修改为0,直到最左边的1为止.
这种方法也可以用来计算x二进制中1的数目,当x二进制中1的数目比较小的
时候算法的效率很高。
m为2的代码实现:
unsigned josephus2k(unsigned n, unsigned k)
{
unsiged t = (n<<1) - (k<<1) + 1;
return (n<<1)+1 - t*flp2((n<<1)/t);
}
5. m为2的情况, k为n的情形
该问题一般都是计算最后一个被杀的人的位置。
现在考虑更为特殊的,m为2的情况, k为n的情形。
令k=n可以化简前边m=2的公式:
x = 2*n + 1 - (2*n+1-2*n)*2^log2((2*n)/(2*n+1-2*n))
即,x = 2*n + 1 - 2^log2(2*n)
从二进制的角度可以理解为:
将n左移1位(即乘以2),然后将最右端设置为1(既加1),
最后将左端的1置为0(既减去2*n的向下取的2的幂)。
更简单的描述是将n的二进制表示循环右移动一位!
例如: n为1011001 -> 0110011 -> 110011
用代码实现为:
unsigned josephus2n(unsigned n)
{
return ((n-flp2(n))<<1)|1;
}
===================
class Josephus
{
static class Node
{
int val; Node next;
Node(int v) { val = v; }
}
public static void main(String[] args)
{
int N = Integer.parseInt(args[0]);
int M = Integer.parseInt(args[1]);
Node t = new Node(1);
Node x = t;
for (int i = 2; i <= N; x = (x.next=new Node(i++)));
x.next = t;
while (x != x.next)
{
for (int i = 1; i < M; i++) x = x.next;
x.next = x.next.next;
}
Out.println("Survivor is " + x.val);
}
}
unsigned josephus(unsigned m, unsigned n, unsigned k)
{
unsigned x = km;
while(x <= n) x = (m*(x-n)-1)/(m-1);
return x;
}
unsigned flp2(unsigned x)
{
unsigned y;
do { y = x; x &= x-1; }while(x);
return y;
}
unsigned josephus2n(unsigned n)
{
return ((n-flp2(n))<<1)|1;
}
unsigned josephus2k(unsigned n, unsigned k)
{
unsiged t = (n<<1) - (k<<1) + 1;
return (n<<1)+1 - t*flp2((n<<1)/t);
}
参考knuth相关著作
开始按照我的想法第n次拿走的肯定是关于pow(2,n)的奇数倍,所以就是把数2进制表示,前10为不能够为1 所以答案应该是1024,但是后来看了关于这个问题的算法才知道,还与数的个数为奇数或者偶数有关,按照上面的理论口算也知道是1952
下面是我的程序实现,循环链表的运用
#include"stdio.h"
#include"stdlib.h"
#include"time.h"
#include"math.h"
typedef struct node //define the node of the linklist
{
int number ;
struct node * next ;
}lNode ,*pNode ;
pNode head ;
pNode tail ;
void creatLinkList ( int n ) // creat the linklist
{
head = ( pNode ) malloc ( sizeof ( lNode));
head->number = 1 ;
head->next = NULL ;
tail = head ;
for ( int i = 2 ; i <= n ; i ++ )
{
pNode newnode ;
newnode = ( pNode ) malloc ( sizeof(lNode) );
newnode->number = i ;
newnode->next = tail->next ;
tail->next = newnode ;
tail = newnode ;
}
tail->next = head ; //circle linklist
}
void freeMem(pNode p) // free the momeroy the node takes
{
free (p);
p = NULL ;
}
void deleteNode() // delete the node after pfNode
{
pNode p = tail->next ;
tail->next = p->next ;
head = tail ->next ;
freeMem(p);
}
int main()
{
int n ;
int count = 0 ;
printf("please input the number of node :");
scanf("%d",&n);
creatLinkList(n);
while ( head->next != head)
{
count ++ ;
if ( count % 2 == 1)
{
deleteNode();
continue ;
}
tail = head ;
head = head->next ;
}
printf("the last node is %d /n",head->number);
return 0 ;
}
运行结果:please input the number of node :2000
the last node is 1952