dijkstra 洛谷P2299 Mzc和体委的争夺战

洛谷P2299 Mzc和体委的争夺战

题目描述

mzc家很有钱(开玩笑),他家有n个男家丁(做过前三弹的都知道)。但如此之多的男家丁吸引来了我们的体委(矮胖小伙),他要来与mzc争夺男家丁。

mzc很生气,决定与其决斗,但cat的体力确实有些不稳定,所以他需要你来帮他计算一下最短需要的时间。

输入输出格式

输入格式:

 

第一行有两个数n,m.n表示有n个停留站,m表示共有m条路。

之后m行,每行三个数ai​bi​ci​,表示第a_iai​个停留站到第bi​个停留站需要ci​的时间。(无向)

 

输出格式:

 

一行,输出1到n最短时间。

 

输入输出样例

输入样例#1: 复制

5 8
1 2 3
2 3 4
3 4 5
4 5 6
1 3 4
2 4 7
2 5 8
1 5 100

输出样例#1: 复制

11

说明

n<2500     m<2*10^5

由于mzc大大十分着急,所以他只能等待1s。

 <

### Dijkstra算法在平台的应用 #### 关于玛丽卡问题中的Dijkstra算法应用 对于特定场景下的短路径计算,如玛丽卡问题中提到的情况,在每次迭代过程中将之前找到的短路径上的某一条边设置为极大值(例如`1e9`),以此模拟该路段堵塞无法通行的状态,之后再次执行Dijkstra算法来寻找新的短路径[^1]。 ```python import heapq def dijkstra(graph, start): queue = [] distances = {node: float('inf') for node in graph} distances[start] = 0 heapq.heappush(queue, (distances[start], start)) while queue: current_distance, current_node = heapq.heappop(queue) if current_distance > distances[current_node]: continue for neighbor, weight in graph[current_node].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(queue, (distance, neighbor)) return distances ``` 此代码片段展示了如何实现基本形式的Dijkstra算法用于解决单源短路径问题。然而针对具体题目需求可能还需要额外处理逻辑,比如上述提及到的修改已知优解路径上的权重操作。 #### 转账手续费小化问题 另一个例子是在P1576小花费一题里,通过构建加权图模型表示不同个体间转账所需支付的成本百分比,并利用Dijkstra算法找出从起点至终点成本低的传输路线[^2]。 为了帮助更好地理解掌握这类基于图论优化的问题解决方案,建议访问官方网站查阅更多关于Dijkstra算法的实际案例以及官方提供的教学资源链接。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值