Codeforces Beta Round #89 (Div. 2)D. Caesar's Legions

D. Caesar's Legions
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Gaius Julius Caesar, a famous general, loved to line up his soldiers. Overall the army had n1 footmen and n2horsemen. Caesar thought that an arrangement is not beautiful if somewhere in the line there are strictly more thatk1 footmen standing successively one after another, or there are strictly more than k2 horsemen standing successively one after another. Find the number of beautiful arrangements of the soldiers.

Note that all n1 + n2 warriors should be present at each arrangement. All footmen are considered indistinguishable among themselves. Similarly, all horsemen are considered indistinguishable among themselves.

Input

The only line contains four space-separated integers n1n2k1k2 (1 ≤ n1, n2 ≤ 100, 1 ≤ k1, k2 ≤ 10) which represent how many footmen and horsemen there are and the largest acceptable number of footmen and horsemen standing in succession, correspondingly.

Output

Print the number of beautiful arrangements of the army modulo 100000000 (108). That is, print the number of such ways to line up the soldiers, that no more than k1 footmen stand successively, and no more than k2horsemen stand successively.

Sample test(s)
input
2 1 1 10
output
1
input
2 3 1 2
output
5
input
2 4 1 1
output
0
Note

Let's mark a footman as 1, and a horseman as 2.

In the first sample the only beautiful line-up is: 121

In the second sample 5 beautiful line-ups exist: 1212212212212122122122121

题意:有n1个步兵,n2个骑兵,将这些士兵进行排队,步兵不能连续排超过k1个,骑兵不能连续排超过k2个,问你排列

      的方案数。

思路:dp[i][j][0]表示排列i个步兵,j个骑兵满足步兵要求的方案数:dp[i][j][0]+=dp[i-k][j][1](k表示连续放k个步兵          dp[i][j][1],表示满足骑兵的方法)

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define mod 100000000

int dp[105][105][2];
int main()
{
    int n1,n2,k1,k2;
    int i,j,k;
    while(scanf("%d%d%d%d",&n1,&n2,&k1,&k2)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        dp[0][0][0]=dp[0][0][1]=1;
        for(i=0;i<=n1;i++)
        {
            for(j=0;j<=n2;j++)
            {
                for(k=1;k<=k1&&k<=i;k++)
                {
                    dp[i][j][0]=(dp[i][j][0]+dp[i-k][j][1])%mod;
                }
                for(k=1;k<=k2&&k<=j;k++)
                {
                    dp[i][j][1]=(dp[i][j][1]+dp[i][j-k][0])%mod;
                }
            }
        }
        printf("%d\n",(dp[n1][n2][0]+dp[n1][n2][1])%mod);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值