算法大总结之----10大经典排序算法(从小到大排列)

1. 冒泡排序

冒泡排序,顾名思义,就是出头的被排序。其算法复杂度为O( n 2 n^{2} n2),空间复杂度为O( 1 1 1)

1.1. 算法讲解

  • 将第j个元素和后面的元素依次对比,如果大于序列为j+1的元素,就进行交换。
  • 作为对比的基础元素j取值范围为"0 => size - 2"。因为j + 1不可超过size - 1。因而,需要进行对比的jsize - 1个,这个组别用字母i表示。
  • 当排序到第i组元素时候,需要做对比的就只需size - i - 1个。以第一次对比为例子,从第一个到最后一个元素都和相邻的两两对比交换,因此这组所有数中最大的已经交换到了最后一位。所以下一次,就不需要考虑它了。第二次,这一组最大的交换到了倒数第二位…。因此需要做对比的就只需size - i - 1个。

1.2. 代码实现

void BubbleSort(int a[], int size)
{
    for (int i = 0; i < size - 1; i++)
    {
        for (int j = 0; j < size - i - 1; j++)
        {
            int temp = 0;
            if (a[j] > a[j + 1])
            {
                temp = a[j];
                a[j] = a[j + 1];
                a[j + 1] = temp;
            }
        }
    }
}

2. 选择排序

选择排序也是非常直观的,唯一的好处可能就是不占用额外的内存空间。算法复杂度为O( n 2 n^{2} n2),空间复杂度为O( 1 1 1)

2.1. 算法讲解

  • 选择排序认为前i个元素是排序好的,因此将后面的元素排序即可。i的取值范围为0 => size - 1
  • 对排序第i个元素的那一组,将i的下标暂存(MIN),并认为这个元素是最小的(a[MIN])。如果后面的元素有比次元素小得,将**a[MIN]**更新为更小的元素,并将所记录的最小元素下标(MIN)也更新。
  • 在这一组遍历结束,如果MIN不是初始值0了,意味着这一组的第一个元素不是最小的,那么将这个最小的元素和第一个元素做交换,以保证从开头到这个元素的这一段是已经排序好的。
  • 将第2步,第3步重复进行直至所有。

2.2. 代码实现

void SelectSort(int a[], int size)
{
    int MIN = 0;
    for (int i = 0; i < size - 1; i++)
    {
        MIN = i;
        for (int j = i + 1; j < size; j++)
        {
            if (a[j] < a[MIN])
            {
                MIN = j;
            }
        }
        if (MIN != i)
        {
            int temp = 0;
            temp = a[i];
            a[i] = a[MIN];
            a[MIN] = temp;
        }
    }
}

3 插入排序

插入排序就好像打扑克牌整理牌组一样,从后面看起,如果此牌小于前面整理好的牌,就插入前面,因而前面整理好的牌,在被插入的后面的,依次后移一位。
可以说插入排序是远离最直观的,算法复杂度为O( n 2 n^{2} n2) ,空间复杂度为O( 1 1 1)

2.1. 算法讲解

  • 排序分为若干组进行,其中的一组为从第i个元素开始,直到最后一个元素为止。
  • 由于每进行一次排序,前面的都已经排序完成,因此只需对比这第i个元素是不是比前面i-1个元素小就行。
  • 若第i个元素小于前面i-1个元素中的第j个元素,就首先将这第i个元素记录下来,然后把从第j个元素到第i-1个元素依次后移,最后再把记录下来的元素,插入第j个位置。
  • 将此步骤进行循环即可。

2.2. 代码实现

void InsertSort(int a[], int size)
{
    int i, j, temp;
    for (i = 1; i < size; i++)
    {
        if (a[i] < a[i - 1])
        {
            temp = a[i];
            for (j = i - 1; j >= 0 && a[j] > temp; j--)
            {
                a[j + 1] = a[j];
            }
            a[j + 1] = temp;
        }
    }
}

4 希尔排序

2.1. 算法讲解

2.2. 代码实现

void ShellSort(int a[], int size)
{
    for (int gap = size / 2; gap > 0; gap /= 2)
    {
        for (int i = gap; i < size; i++)
        {
            int temp = a[i];
            int j = 0;
            for (j = i - gap; j >= 0 && a[j] > temp; j -= gap)
            {
                a[j + gap] = a[j];
            }
            if (j != 0)
                a[j + gap] = temp;
        }
    }
}

5 归并排序

归并排序是要将元素先分组,分到两两一组,然后再合并,合并时候,按大小合并。其算法复杂度为O( n l o g 2 n nlog_2n nlog2n),空间复杂度为O( n n n)

2.1. 算法讲解

2.2. 代码实现

void MergeSort(int a[], int left, int right)
{
    if (left >= right)
        return;

    int Len = right - left + 1;
    int mid = (right + left) / 2;
    int start1 = left;
    int end1 = mid;
    int start2 = mid + 1;
    int end2 = right;
    MergeSort(a, start1, end1);
    MergeSort(a, start2, end2);

    int i = 0;
    int *temp = (int *)malloc(Len * sizeof(int));
    while (start1 <= end1 && start2 <= end2)
    {
        temp[i++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
    }
    while (start1 <= end1)
        temp[i++] = a[start1++];
    while (start2 <= end2)
        temp[i++] = a[start2++];

    for (int k = left, i = 0; k <= right; k++, i++)
        a[k] = temp[i];

    free(temp);
}

6 快速排序

快速排序和归并排序都是分治的思想,归并排序是相邻元素两两分组最后按大小合并,而快速排序则是选定一个基准元素,小于此基准的放在左侧,大于的放在右侧(相同的随意)。依据这样的原理实现分而治之的思想。其算法复杂度为O( n l o g 2 n nlog_2n nlog2n),空间复杂度为O( n l o g 2 n nlog_2n nlog2n)

6.1. 算法讲解

  • 下面程序是一个递归的解法,首先要确定low < high
  • 将数组依次寻找基准元素,分而治之,迭代的目的就是运行QucikPartition函数,实现在组内,将小于基准元素的放在左侧,大于的放在右侧。
  • 这个基准元素我选用的是a[high],选用其它的,比如a[low]也可以,但要注意,需保持一定的规律性。
  • a[high]作为基准元素pivot
  • 预先保存下标low作为增量,并从low开始遍历
  • 当遍历元素小于基准,则和a[i]进行交换
  • 最后a[i]再和基准元素a[high]交换

第一次遍历

  • 光看描述肯定有人不清楚,我以第一次选基准分组过程列出来,很明显可以看到,随着i,j增加,和数次的交换,使得小于6的交换到了左侧,大于6的交换到了右侧。
  • 这样的步骤循环进行,知道low >= high结束,快速交换就完成了。

6.2. 代码实现

void swap(int *a, int *b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}

int QuickPartition(int a[], int low, int high)
{
    int pivot = a[high];
    int i = low;
    for (int j = low; j < high; j++)
    {
        if (a[j] < pivot)           
        {
            swap(&a[i], &a[j]);
            i++;
        }
    }
    swap(&a[i], &a[high]);
    return i;
}

void QuickSort(int a[], int low, int high)
{
    if (low < high)
    {
        int pivot = QuickPartition(a, low, high);
        QuickSort(a, low, pivot - 1);
        QuickSort(a, pivot + 1, high);
    }
}

7 堆排序

2.1. 算法讲解

通过建立大顶堆或小顶堆来进行排序。在排序过程中,不停的调整堆顶元素和堆尾元素。

我是看的这个:堆排序-C语言实现

2.2. 代码实现

#include<stdio.h>
typedef int ElementType;
int arr1[11]={0,2,87,39,49,34,62,53,6,44,98};
#define LeftChild(i) (2 * (i) + 1)

void Swap(int* a,int* b)
{
    int temp=*a;
    *a=*b;
    *b=temp;
}


void PercDown(int  A[], int i, int N)
{
    int child;
    ElementType Tmp;

    for (Tmp = A[i]; 2*i+1 < N; i = child){
        child = 2*i+1; //注意数组下标是从0开始的,所以左孩子的求发不是2*i
        if (child != N - 1 && A[child + 1] > A[child])
            ++child;                //找到最大的儿子节点
        if (Tmp < A[child])
            A[i] = A[child];
        else
            break;
    }
    A[i] = Tmp;
}

void HeapSort(int A[], int N)
{
    int i;
    for (i = N / 2; i >= 0; --i)
        PercDown(A, i, N);    //构造堆
    for(i=N-1;i>0;--i)
    {
        Swap(&A[0],&A[i]);        //将最大元素(根)与数组末尾元素交换,从而删除最大元素,重新构造堆
        PercDown(A, 0, i);
    }
}

void Print(int A[],int N)
{
    int i;
    for(i=0;i<N;i++)
    {
        printf(" %d ",A[i]);
    }
}
int main()
{
    int arr[10]={2,87,39,49,34,62,53,6,44,98};
    Print(arr,10);
    printf("\n");
    HeapSort(arr,10);
    Print(arr,10);
    printf("\n");
    return 0;
}

8 计数排序

2.1. 算法讲解

2.2. 代码实现

void CountSort(int a[], int size)
{
    int MAX = 0;
    for (int i = 0; i < size; i++)
        MAX = a[i] > MAX ? a[i] : MAX;
    MAX++;   //容器的数量为最大元素值+1(因为从0开始)
    
    int *sort = (int *)malloc(size * sizeof(int));  //排序好的数组
    int *container = (int *)malloc(MAX * sizeof(int));  //容器
    memset(sort, 0, size * sizeof(int));
    memset(container, 0, size * sizeof(int));

    for (int j = 0; j < size; j++)
        container[a[j]]++;

    for (int k = 1; k < MAX; k++)
        container[k] += container[k - 1];

    for (int m = size; m > 0; m--)
        sort[--container[a[m - 1]]] = a[m - 1];

    for (int n = 0; n < size; n++)
        a[n] = sort[n];

    free(sort);
    free(container);
}

9 桶排序

桶排序,顾名思义,就是对桶来排序,并且桶内盛放一定元素。因而,桶排序可以宏观上分为两个步骤:桶内元素的排序和桶的排序。
桶内元素的排序可以是冒泡排序,可以是快速排序,也可以是其他排序,甚至可以是递归的桶排序,是否稳定以及空间时间复杂度,很大程度取决于桶内元素的排序方式。
桶排序其实可以看作是计数排序的进阶版,只不过,计数排序相当于每个桶只放相同的元素,而桶排序是桶内放入处于一定区间的元素。

2.1. 算法讲解

2.2. 代码实现

10 基数排序

2.1. 算法讲解

之后再写吧

2.2. 代码实现

附录

1. 10大经典排序算法性能分析

2. C/C++的内置排序函数

其实平时写程序,用到排序是很多的,不多平时都是调用 sort函数(c++)/qsort 函数(c语言)函数了,调用函数对做项目是很好的,可也不要忘了怎么实现的,基础知识不能丢。
这里顺便给不清楚 sort函数(c++)/qsort函数(c语言) 的朋友说下。

2.1. c++的sort函数

2.1.1. 函数简述

头文件中函数定义为:

template <class _RanIt, class _Pr>
void sort(const _RanIt _First, const _RanIt _Last, _Pr _Pred) { // order [_First, _Last), using _Pred
    _Adl_verify_range(_First, _Last);
    const auto _UFirst = _Get_unwrapped(_First);
    const auto _ULast  = _Get_unwrapped(_Last);
    _Sort_unchecked(_UFirst, _ULast, _ULast - _UFirst, _Pass_fn(_Pred));
}

简单版本的定义:sort(begin, end, cmp)
参数:

  • _First(start):起始元素指针位置
  • _Last(end):终止元素指针位置
  • _Pr_pred(cmp):排序规则,这是函数指针,回调函数的简单运用
2.1.2. cmp叙述

这是一个函数指针,回调函数的运用。
最简单的单元素大小:

bool cmp(int a,int b)
{
    return a > b;
}

结构体排序:

typedef struct _stu
{
	int age;
	string name;
}stu;

bool cmp(stu a, stu b)
{
	return a.age < b.age;
}
2.1.3. 代码实现

对结构体的排序做一次代码示例

#include <iostream>
#include <algorithm>
#include <time.h>
using namespace std;

typedef struct _stu
{
	int age;
	string name;
}stu;

bool cmp(stu a, stu b)
{
	return a.age < b.age;
}

int main()
{
	stu student[10];
	for (int i = 0; i < 10; i++)
	{
		srand(i);  //随机数种子
		student[i].age = rand() % 20;  //生成不大于20的随机数
		student[i].name = "LiLei";
	}
	for (int i = 0; i < 10; i++)
	{
		cout << "The " << i << "th student age=" << student[i].age << " name=" << student[i].name << endl;
	}
	sort(student, student + 10, cmp);
	//student是结构体其实元素指针位置,student + 10是终止元素位置
	cout << "*********************************" << endl;
	for (int i = 0; i < 10; i++)
	{
		cout << "The " << i << "th student age=" << student[i].age << " name=" << student[i].name << endl;
	}
	return 0;
}

2.2 c语言的qsort函数

2.1.1. 函数简述

函数原型和**C++**类似,为:void qsort(void *base, size_t nitems, size_t size, int (*cmp)(const void *, const void*)))
参数:

  • base: 指向要排序的数组的第一个元素的指针。
  • nitems: 由 base 指向的数组中元素的个数。
  • size: 数组中每个元素的大小,以字节为单位。
  • cmp: 用来比较两个元素的函数,即函数指针(回调函数)
2.1.2. cmp叙述

注意和**C++**的cmp区别
对整数数组

int cmp(const void *a,const void *b)
{
	return *(int*)a - *(int*)b;
}

对结构体

typedef struct _stu
{
	int age;
	char name[10];
}stu;

int cmp(const void* a, const void* b)
{
	stu* A = (stu*)a;
	stu* B = (stu*)b;
	return A->age - B->age;
}

C语言中的cmp是将指针转为void指针的。

2.1.3. 代码实现

对结构体的排序做一次代码示例

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct _stu
{
	int age;
	char name[10];
}stu;

int cmp(const void* a, const void* b)
{
	stu* A = (stu*)a;
	stu* B = (stu*)b;
	return A->age - B->age;
}

int main()
{
	stu student[10];
	for (int i = 0; i < 10; i++)
	{
		srand(i);
		student[i].age = rand() % 20;
		strcpy(student[i].name, "LiLei");
	}
	for (int i = 0; i < 10; i++)
	{
		printf("The %dth student age=%d, name=%s\n", i, student[i].age, student[i].name);
	}
	qsort(student, 10, sizeof(stu), cmp);  //注意这里和sort的区别
	printf("*********************************\n");
	for (int i = 0; i < 10; i++)
	{
		printf("The %dth student age=%d, name=%s\n", i, student[i].age, student[i].name);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值