GWR4 软件输入数据制作

本文围绕GWR软件展开,介绍其是实现地理加权回归建模的专业软件,要求输入.csv格式数据。以地表温度和NDVI为例,说明了用Arcgis制作输入文件的过程。还指出对栅格点进行地理加权回归时,因数据量大,GWR软件及相关python库会报错,修改源码也未解决。

前言

GWR软件是实现地理加权回归建模的专业软件。
GWR软件下载地址Click here
软件下载后自带了User guidance,也可以参照这篇博客
软件要求输入的数据格式为.csv。数据中要包括投影坐标,因变量,解释变量。

数据制作

我这里以地表温度(LST)做因变量,NDVI做解释变量为例,使用Arcgis制作.csv输入文件。
LST和NDVI的原始数据是两幅投影坐标的栅格影像。
首先在Arcgis中打开影像,然后使用栅格转点工具将栅格转换为点状shp文件。

在这里插入图片描述
得到每个像素点的shp文件。
在这里插入图片描述
原先栅格每个像素的值会自动在shp文件属性表中生成一个字段GRID_CODE。
接下来为属性表添加投影坐标数据。
打开shp图层的属性表,添加字段,并计算几何。同理添加Y坐标也这样操作。

gwr4软件是一种用于空间数据分析的工具,主要用于解释和预测空间数据之间的关系。它基于地理加权回归(Geographically Weighted Regression,简称GWR)模型,可以帮助研究人员更好地理解和解释数据中的空间变异。 首先,gwr4软件提供了一系列的统计分析工具,可以帮助用户对空间数据进行可视化和探索性分析。用户可以通过散点图、柱状图、地图等方式,直观地展示数据的分布和关系。这有助于我们快速了解数据的特征和趋势。 其次,gwr4软件可以根据用户所选的自变量和因变量,使用GWR模型来解析数据之间的关系。该模型允许我们在不同的位置使用不同的回归系数来进行建模。这样,我们可以更准确地描述和预测空间数据的变异,从而提高我们对数据集的理解。 此外,gwr4软件还提供了与其他数据分析工具的整合功能。我们可以将GWR模型的结果与其他统计软件中的分析结果进行对比,并通过这种比较来进一步验证我们的建模结果的可靠性。 总结来说,gwr4软件是一个用于解释和预测空间数据之间关系的分析工具。通过使用GWR模型,它能够帮助我们更好地理解和解释数据的空间变异,并提供了一系列的统计分析工具来支持数据的可视化和探索性分析。同时,gwr4软件还具备与其他数据分析工具的整合功能,通过这种整合可以进一步验证我们的建模结果。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值