CUDA
tkp2014
这个作者很懒,什么都没留下…
展开
-
cuda与openGL互操作
cuda与openGL互操作的实现与分析(1)转载 2014-06-22 21:15:01 · 945 阅读 · 0 评论 -
CUDA介绍
https://en.wikipedia.org/wiki/CUDA#Supported_GPUs转载 2015-07-09 09:58:07 · 452 阅读 · 0 评论 -
CUDA实现矩阵转置
#include #include #include #include #include #include #include #include /*************************** * Matrix Transpose on cpu * **************************/#define row 10#define col 1原创 2015-01-21 21:34:51 · 3211 阅读 · 1 评论 -
CUDA和DXVA的简单对比
http://www.freemake.com/blog/cuda-dxva-easily-explained/原创 2015-01-06 17:30:27 · 2560 阅读 · 0 评论 -
NVIDIA的资源网站
CUDA GPUshttps://developer.nvidia.com/cuda-gpus // 关于NVIDIA GPU,CUDA原创 2015-01-06 17:17:30 · 854 阅读 · 0 评论 -
GPU的硬件结构
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm。sp: 最基本的处理单元,streaming processor 最后具体的指令和任务都是在sp上处理的。GPU进行并行计算,也就是很多个sp同时做处理sm:多个sp加上其他的一些资源组成一个sm, streaming multiprocessor.转载 2014-11-02 17:46:40 · 871 阅读 · 0 评论 -
平方根倒数速算法之二
我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢?虽然有可能你平时没有想过这个问题,不过正所谓是“临阵磨枪,不快也光”,你“眉头一皱,计上心来”,这个不是太简单了嘛,用二分的方法,在一个区间中,每次拿中间数的平方来试验,如果大了,就再试左区间的中间转载 2014-11-02 10:06:26 · 642 阅读 · 0 评论 -
平方根倒数速算法
平方根倒数速算法[编辑]游戏实现光照和反射效果时以平方根倒数速算法计算波动角度,此图以第一人称射击游戏OpenArena为例。平方根倒数速算法(英语:Fast Inverse Square Root,亦常以“Fast InvSqrt()”或其使用的十六进制常数0x5f3759df代称)是用于快速计算(即的平方根的倒数,在此需取符合IEEE转载 2014-11-02 09:57:33 · 1682 阅读 · 0 评论 -
GPU并行编程方法
编写利用GPU加速的并行程序有多种方法,归纳起来有三种:1. 利用现有的GPU函数库。Nvidia 的CUDA工具箱中提高了免费的GPU加速的快速傅里叶变换(FFT)、基本线性代数子程序(BLAST)、图像与视频处理库(NPP)。用户只要把源代码中CPU版本的快速傅里叶变换、快速傅里叶变换和图像与视频处理库替换成相应的GPU版,即可得到性能加速。除了Nvidia提供的函转载 2014-11-01 10:41:03 · 598 阅读 · 0 评论 -
CPU和GPU的区别
异构计算的英文名称是Heterogeneous computing,主要是指使用不同类型指令集和体系架构的计算单元组成系统的计算方式。常见的计算单元类别包括CPU、GPU等协处理器、DSP、ASIC、FPGA等。我们常说的并行计算正是异构计算中的重要组成部分异构计算近年来得到更多关注,主要是因为通过提升CPU时钟频率和内核数量而提高计算能力的传统方式遇到了散热和能耗瓶颈。而与此同时,GPU等专用计转载 2014-11-01 11:05:48 · 605 阅读 · 0 评论 -
CUDA中的计时函数
方法一: cudaEvent_t start, stop;cudaEventCreate(&start);cudaEventCreate(&stop);cudaEventRecord(start, 0);/cudaEventRecord(stop, 0);cudaEventSynchronize(stop);float el转载 2014-10-23 22:46:17 · 3646 阅读 · 0 评论 -
Device Memory Spaces
CUDA devices use several memory spaces, which have different characteristics thatreflect their distinct usages in CUDA applications. These memory spaces include global,local, shared, texture, and原创 2014-11-15 10:13:23 · 618 阅读 · 0 评论 -
Linux14.04(64bit) + CUDA6.5 环境搭建
1. 安装build-essentials安装开发所需要的一些基本包sudo apt-get install build-essential2. 安装NVIDIA驱动 (3.4.0)输入下列命令添加驱动源sudo add-apt-repository ppa:xorg-edgers/ppasudo apt-get update安装340版驱转载 2014-11-13 17:08:30 · 1281 阅读 · 0 评论 -
CUDA开发环境配置大全
一、操作系统:(1)windows操作系统:1.windows xp:(1) win32_xp_ CUDA3.0_VS2010_配置指南-DOC:http://cudabbs.it168.com/forum.php?mod=viewthread&tid=2250&highlight=vs%2Bcuda(2) xp下转载 2014-11-13 14:20:09 · 697 阅读 · 0 评论 -
CUDA测试设备属性的代码
bool CUDA_initial(void){int i;int device_count;if( cudaGetDeviceCount(&device_count) ){ printf(" There is zero device beyond 1.0/n"); return false;}else { printf("There is %d de转载 2014-10-25 20:46:49 · 627 阅读 · 0 评论 -
Opencv调用GPU模块
1、OpenCV提供的开发包中提供的库没有开启gpu和ocl模块功能,虽然有***gpu.lib/***gpu.dll文件,但不能用。如果调用gpu::getCudaEnableDeviceCount()将会return 0;要开启该功能需要重新编译opencv的库。2、 参考http://docs.opencv.org/modules/gpu/doc/introduction.html和转载 2015-06-14 10:42:55 · 2716 阅读 · 0 评论