leetcode -- 60. Permutation Sequence

本文介绍了一种解决LeetCode中求第K个排列序列问题的算法,通过使用递减阶乘和列表来生成从1到n的所有可能排列,并返回第k个排列。算法将n!个可能的排列按顺序列出,对于给定的n和k,可以找到对应的第k个排列序列。
摘要由CSDN通过智能技术生成

题目描述

题目难度:Medium
The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

“123”
“132”
“213”
“231”
“312”
“321”
Given n and k, return the kth permutation sequence.

Note:

Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.

  • Example 1:

Input: n = 3, k = 3
Output: “213”

  • Example 2:

Input: n = 4, k = 9
Output: “2314”

AC代码

class Solution {
    public String getPermutation(int n, int k) {
         List<Integer> nums = new ArrayList<>();
        for(int i = 1;i <= n;i++) nums.add(i);
        int[] factorial = new int[n];
        factorial[0] = 1;
        for(int i = 1;i < n;i++) factorial[i] = i * factorial[i - 1];
        k = k - 1;//题目给的 k 是从 1 开始的
        StringBuilder sb = new StringBuilder();
        for(int i = n - 1;i >= 0;i--){
            int index = k / factorial[i];
            k = k % factorial[i];
            sb.append(nums.get(index));
            nums.remove(index);
        }
        return sb.toString();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值