Numpy 数组操作

Numpy 数组操作

Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:

修改数组形状

函数描述
reshape不改变数据的条件下修改形状
flat数组元素迭代器
flatten返回一份数组拷贝,对拷贝所做的修改不会影响原始数组
ravel返回展开数组

numpy.reshape

numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下: numpy.reshape(arr, newshape, order='C')

  • arr:要修改形状的数组
  • newshape:整数或者整数数组,新的形状应当兼容原有形状
  • order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'k' -- 元素在内存中的出现顺序。

实例

复制代码

import numpy as np

a=np.arange(8)

print('原始数组是:')

print(a)

print('\n')

 

b=np.reshape(a,(4,2))

print('修改后的数组是:')

print(b)

 

------------执行以上程序,返回的结果为------------

原始数组是:
[0 1 2 3 4 5 6 7]


修改后的数组是:
[[0 1]
 [2 3]
 [4 5]
 [6 7]]

复制代码

numpy.ndarray.flat

numpy.ndarray.flat 是一个数组元素迭代器,实例如下:

复制代码

import numpy as np

a=np.arange(8).reshape(4,2)

print('原始数组是:')

for x in a:

    print(x)

 

#对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器:

print('迭代后的数组是:')

for x in a.flat:

    print(x)

 

------------执行以上程序,返回的结果为------------

原始数组是:
[0 1]
[2 3]
[4 5]
[6 7]


迭代后的数组是:
0
1
2
3
4
5
6
7

复制代码

numpy.ndarray.flatten

numpy.ndarray.flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组,格式如下:

ndarray.flatten(order='C')

参数说明:

  • order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。

复制代码

import numpy as np

a=np.arange(8).reshape(4,2)

print('原始数组是:')

print(a)

print('\n')

 

print('展开的数组:')

print(a.flatten())

print('\n')

 

print('以F风格展开的数组:')

print(a.flatten(order='F'))

 

------------执行以上程序,返回的结果为------------

原始数组是:
[[0 1]
 [2 3]
 [4 5]
 [6 7]]


展开的数组:
[0 1 2 3 4 5 6 7]


以F风格展开的数组:
[0 2 4 6 1 3 5 7]

复制代码

numpy.ravel

numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图(view,有点类似 C/C++引用reference的意味),修改会影响原始数组。

该函数接收两个参数:

numpy.ravel(a, order='C')

参数说明:

  • order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。

复制代码

import numpy as np

a=np.arange(8).reshape(4,2)

print('原始数组:')

print(a)

print('\n')

 

print('使用ravel之后的数组')

print(a.ravel())

 

print('以F风格调用ravel函数之后')

print(a.ravel(order='F'))

 

------------执行以上程序,返回的结果为------------

原始数组:
[[0 1]
 [2 3]
 [4 5]
 [6 7]]


使用ravel之后的数组
[0 1 2 3 4 5 6 7]


以F风格调用ravel函数之后
[0 2 4 6 1 3 5 7]

复制代码

翻转数组

函数描述
transpose对换数组的维度
ndarray.T和 self.transpose() 相同
rollaxis向后滚动指定的轴
swapaxes对换数组的两个轴

 

numpy.transpose

numpy.transpose 函数用于对换数组的维度,格式如下:

numpy.transpose(arr, axes)

参数说明:

  • arr:要操作的数组
  • axes:整数列表,对应维度,通常所有维度都会对换。

复制代码

import numpy as np

a=np.arange(8).reshape(4,2)

print('原始数组:')

print(a)

print('\n')

 

print('对换数组:')

print(np.transpose(a))

 

------------执行以上程序,返回的结果为------------

原始数组:
[[0 1]
 [2 3]
 [4 5]
 [6 7]]


对换数组:
[[0 2 4 6]
 [1 3 5 7]]

复制代码

numpy.ndarray.T 类似 numpy.transpose:

复制代码

import numpy as np

a=np.arange(8).reshape(4,2)

print('原始数组:')

print(a)

print('\n')

 

print('转置数组:')

print(a.T)

 

------------执行以上程序,返回的结果为------------

原始数组:
[[0 1]
 [2 3]
 [4 5]
 [6 7]]


转置数组:
[[0 2 4 6]
 [1 3 5 7]]

复制代码

numpy.rollaxis

numpy.rollaxis 函数向后滚动特定的轴到一个特定位置,格式如下:

numpy.rollaxis(arr, axis, start)

参数说明:

  • arr:数组
  • axis:要向后滚动的轴,其它轴的相对位置不会改变
  • start:默认为零,表示完整的滚动。会滚动到特定位置。

复制代码

import numpy as np

# 创建了三维的 ndarray
a = np.arange(8).reshape(2,2,2)

print ('原数组:')
print (a)
print ('\n')
# 将轴 2 滚动到轴 0(宽度到深度)

print ('调用 rollaxis 函数:')
print (np.rollaxis(a,2))
# 将轴 0 滚动到轴 1:(宽度到高度)
print ('\n')

print ('调用 rollaxis 函数:')
print (np.rollaxis(a,2,1))

 

------------执行以上程序,返回的结果为------------

原数组:
[[[0 1]
  [2 3]]

 [[4 5]
  [6 7]]]


调用 rollaxis 函数:
[[[0 2]
  [4 6]]

 [[1 3]
  [5 7]]]


调用 rollaxis 函数:
[[[0 2]
  [1 3]]

 [[4 6]
  [5 7]]]

复制代码

numpy.swapaxes

numpy.swapaxes 函数用于交换数组的两个轴,格式如下:

numpy.swapaxes(arr, axis1, axis2)

  • arr:输入的数组
  • axis1:对应第一个轴的整数
  • axis2:对应第二个轴的整数

复制代码

import numpy as np

# 创建了三维的 ndarray
a = np.arange(8).reshape(2,2,2)

print ('原数组:')
print (a)
print ('\n')
# 现在交换轴 0(深度方向)到轴 2(宽度方向)

print ('调用 swapaxes 函数后的数组:')
print (np.swapaxes(a, 2, 0))

 

------------执行以上程序,返回的结果为------------

原数组:
[[[0 1]
  [2 3]]

[[4 5]
  [6 7]]]


调用 swapaxes 函数后的数组:
[[[0 4]
  [2 6]]

[[1 5]
  [3 7]]]

复制代码

修改数组维度

维度描述
broadcast产生模仿广播的对象
broadcast_to将数组广播到新形状
expand_dims扩展数组的形状
squeeze从数组的形状中删除一维条目

numpy.broadcast

numpy.broadcast 用于模仿广播的对象,它返回一个对象,该对象封装了将一个数组广播到另一个数组的结果。

该函数使用两个数组作为输入参数,如下实例:

复制代码

import numpy as np

x = np.array([[1], [2], [3]])
y = np.array([4, 5, 6]) 

# 对 y 广播 x
b = np.broadcast(x,y) 
# 它拥有 iterator 属性,基于自身组件的迭代器元组

print ('对 y 广播 x:')
r,c = b.iters

# Python3.x 为 next(context) ,Python2.x 为 context.next()
print (next(r), next(c))
print (next(r), next(c))
print ('\n')
# shape 属性返回广播对象的形状

print ('广播对象的形状:')
print (b.shape)
print ('\n')
# 手动使用 broadcast 将 x 与 y 相加
b = np.broadcast(x,y)
c = np.empty(b.shape)

print ('手动使用 broadcast 将 x 与 y 相加:')
print (c.shape)
print ('\n')
c.flat = [u + v for (u,v) in b]

print ('调用 flat 函数:')
print (c)
print ('\n')
# 获得了和 NumPy 内建的广播支持相同的结果

print ('x 与 y 的和:')
print (x + y)

 

------------执行以上程序,返回的结果为------------

对 y 广播 x:
1 4
1 5


广播对象的形状:
(3, 3)


手动使用 broadcast 将 x 与 y 相加:
(3, 3)


调用 flat 函数:
[[5. 6. 7.]
[6. 7. 8.]
[7. 8. 9.]]


x 与 y 的和:
[[5 6 7]
[6 7 8]
[7 8 9]]

复制代码

numpy.broadcast_to

numpy.broadcast_to 函数将数组广播到新形状。它在原始数组上返回只读视图。 它通常不连续。 如果新形状不符合 NumPy 的广播规则,该函数可能会抛出ValueError。

numpy.broadcast_to(array, shape, subok)

实例

复制代码

import numpy as np

a = np.arange(4).reshape(1,4)

print ('原数组:')
print (a)
print ('\n')

print ('调用 broadcast_to 函数之后:')
print (np.broadcast_to(a,(4,4)))

 

------------执行以上程序,返回的结果为------------

原数组:
[[0 1 2 3]]


调用 broadcast_to 函数之后:
[[0 1 2 3]
[0 1 2 3]
[0 1 2 3]
[0 1 2 3]]

复制代码

numpy.expand_dims

numpy.expand_dims 函数通过在指定位置插入新的轴来扩展数组形状,函数格式如下:

numpy.expand_dims(arr, axis)

参数说明:

  • arr:输入数组
  • axis:新轴插入的位置

复制代码

import numpy as np

x = np.array(([1,2],[3,4]))

print ('数组 x:')
print (x)
print ('\n')
y = np.expand_dims(x, axis = 0)

print ('数组 y:')
print (y)
print ('\n')

print ('数组 x 和 y 的形状:')
print (x.shape, y.shape)
print ('\n')
# 在位置 1 插入轴
y = np.expand_dims(x, axis = 1)

print ('在位置 1 插入轴之后的数组 y:')
print (y)
print ('\n')

print ('x.ndim 和 y.ndim:')
print (x.ndim,y.ndim)
print ('\n')

print ('x.shape 和 y.shape:')
print (x.shape, y.shape)

 

 

------------执行以上程序,返回的结果为------------

数组 x:
[[1 2]
[3 4]] 数组 y:
[[[1 2]
  [3 4]]]


数组 x 和 y 的形状:
(2, 2) (1, 2, 2)


在位置 1 插入轴之后的数组 y:
[[[1 2]]

[[3 4]]]


x.ndim 和 y.ndim:
2 3


x.shape 和 y.shape:
(2, 2) (2, 1, 2)

复制代码

numpy.squeeze

numpy.squeeze 函数从给定数组的形状中删除一维的条目,函数格式如下:

numpy.squeeze(arr, axis)

实例

复制代码

import numpy as np

x = np.arange(9).reshape(1,3,3)

print ('数组 x:')
print (x)
print ('\n')
y = np.squeeze(x)

print ('数组 y:')
print (y)
print ('\n')

print ('数组 x 和 y 的形状:')
print (x.shape, y.shape)

 

------------执行以上程序,返回的结果为------------

数组 x:
[[[0 1 2]
  [3 4 5]
  [6 7 8]]]


数组 y:
[[0 1 2]
[3 4 5]
[6 7 8]]


数组 x 和 y 的形状:
(1, 3, 3) (3, 3)

复制代码

连接数组

函数描述
concatenate连接沿现有轴的数组序列
stack沿着新的轴加入一系列数组。
hstack水平堆叠序列中的数组(列方向)
vstack竖直堆叠序列中的数组(行方向)

 

numpy.concatenate

numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下:

numpy.concatenate((a1, a2, ...), axis)

参数说明:

  • a1, a2, ...:相同类型的数组
  • axis:沿着它连接数组的轴,默认为 0

复制代码

import numpy as np

a=np.array([[1,2],[3,4]])

print('第一个数组:')

print(a)

print('\n')

 

b=np.array([[5,6],[7,8]])

print('第二个数组是:')

print(b)

print('\n')

 

# 两个数组的维度相同

print('沿轴0连接两个数组:')

print(np.concatenate((a,b)))

 

print('沿轴1连接两个数组:')

print(np.concatenate((a,b),axis = 1))

 

------------执行以上程序,返回的结果为------------

第一个数组:
[[1 2]
 [3 4]]


第二个数组是:
[[5 6]
 [7 8]]


沿轴0连接两个数组:
[[1 2]
 [3 4]
 [5 6]
 [7 8]]


沿轴1连接两个数组:
[[1 2 5 6]
 [3 4 7 8]]

复制代码

numpy.stack

numpy.stack 函数用于沿新轴连接数组序列,格式如下:

复制代码

import numpy as np

a=np.array([[1,2],[3,4]])

print('第一个数组是:')

print(a)

print('\n')

 

b=np.array([[5,6],[7,8]])

print('第二个数组是:')

print(b)

print('\n')

 

print('沿0轴堆叠两个数组')

print(np.stack((a,b),0))

 

print('沿1轴堆叠两个数组:')

print(np.stack((a,b),1))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[1 2]
 [3 4]]


第二个数组是:
[[5 6]
 [7 8]]


沿0轴堆叠两个数组
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]


沿1轴堆叠两个数组:
[[[1 2]
  [5 6]]

 [[3 4]
  [7 8]]]

复制代码

numpy.hstack

numpy.hstack 是 numpy.stack 函数的变体,它通过水平堆叠来生成数组。

复制代码

import numpy as np

a=np.array([[1,2],[3,4]])

print('第一个数组是:')

print(a)

print('\n')

 

b=np.array([[5,6],[7,8])

print('第二个数组是:')

print(b)

print('\n')

 

print('水平堆叠:')

print(np.hstack((a,b)))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[1 2]
 [3 4]]


第二个数组是:
[[5 6]
 [7 8]]


水平堆叠:
[[1 2 5 6]
 [3 4 7 8]]

复制代码

numpy.vstack

numpy.vstack 是 numpy.stack 函数的变体,它通过垂直堆叠来生成数组。

复制代码

import numpy as np

a=np.array([[1,2],[3,4]])

print('第一个数组是:')

print(a)

print('\n')

 

b=np.array([[5,6],[7,8]])

print('第二个数组是:')

print(b)

print('\n')

 

print('垂直堆叠:')

print(np.vstack((a,b)))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[1 2]
 [3 4]]


第二个数组是:
[[5 6]
 [7 8]]


垂直堆叠:
[[1 2]
 [3 4]
 [5 6]
 [7 8]]

复制代码

分割数组

函数数组及操作
split将一个数组分割为多个子数组
hsplit将一个数组水平分割为多个子数组(按列)
vsplit将一个数组垂直分割为多个子数组(按行)

numpy.split

numpy.split 函数沿特定的轴将数组分割为子数组,格式如下:

numpy.split(ary, indices_or_sections, axis)

参数说明:

  • ary:被分割的数组
  • indices_or_sections:果是一个整数,就用该数平均切分,如果是一个数组,为沿轴切分的位置(左开右闭)
  • axis:沿着哪个维度进行切向,默认为0,横向切分。为1时,纵向切分

复制代码

import numpy as np

a=np.arange(9)

print('第一个数组是:')

print(a)

print('\n')

 

print('将数组分为3个大小相等的子数组:')

print(np.split(a,3))

 

print('将数组在一维数组中表明的位置处分割:')

print(np.split(a,[4,7]))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[0 1 2 3 4 5 6 7 8]


将数组分为3个大小相等的子数组:
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8])]


将数组在一维数组中表明的位置处分割:
[array([0, 1, 2, 3]), array([4, 5, 6]), array([7, 8])]

复制代码

numpy.hsplit

numpy.hsplit 函数用于水平分割数组,通过指定要返回的相同形状的数组数量来拆分原数组。

复制代码

import numpy as np

a=np.floor(10 * np.random.random((2,6)))

print('第一个数组是:')

print(a)

print('\n')

 

print('拆分后:')

print(np.hsplit(a,3))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[0. 5. 9. 5. 7. 2.]
 [6. 0. 8. 4. 4. 0.]]


拆分后:
[array([[0., 5.],
       [6., 0.]]), array([[9., 5.],
       [8., 4.]]), array([[7., 2.],
       [4., 0.]])]

复制代码

numpy.vsplit

numpy.vsplit 沿着垂直轴分割,其分割方式与hsplit用法相同。

复制代码

import numpy as np

a=np.arange(16).reshape(4,4)

print('第一个数组是:')

print(a)

print('\n')

 

print('竖直分割:')

print(np.vsplit(a,4))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]


竖直分割:
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]]), array([[12, 13, 14, 15]])]

复制代码

数组元素的添加与删除

函数元素及描述
resize返回指定形状的新数组
append将值添加到数组末尾
insert沿指定轴将值插入到指定下标之前
delete删掉某个轴的子数组,并返回删除后的新数组
unique查找数组内的唯一元素

numpy.resize

numpy.resize 函数返回指定大小的新数组。

如果新数组大小大于原始大小,则包含原始数组中的元素的副本。

numpy.resize(arr, shape)

参数说明:

  • arr:要修改大小的数组
  • shape:返回数组的新形状

复制代码

import numpy as np

a=np.array([[1,2,3],[4,5,6]])

print('第一个数组是:')

print(a)

print('\n')

 

print('第一个数组的形状:')

print(a.shape)

print('\n')

 

print('第二个数组是:')

b=np.resize(a,(3,2))

print(b)

print('\n')

 

print('第二个数组的形状是:')

print(b.shape)

print('\n')

 

# 要注意 a 的第一行在 b 中重复出现,因为尺寸变大了

print('修改第二个数组的形状:')

c=np.resize(b,(3,3))

print(c)

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[1 2 3]
 [4 5 6]]


第一个数组的形状:
(2, 3)


第二个数组是:
[[1 2]
 [3 4]
 [5 6]]


第二个数组的形状是:
(3, 2)


修改第二个数组的形状:
[[1 2 3]
 [4 5 6]
 [1 2 3]]

复制代码

numpy.append

numpy.append 函数在数组的末尾添加值。 追加操作会分配整个数组,并把原来的数组复制到新数组中。 此外,输入数组的维度必须匹配否则将生成ValueError。

append 函数返回的始终是一个一维数组。

numpy.append(arr, values, axis=None)

参数说明:

  • arr:输入数组
  • values:要向arr添加的值,需要和arr形状相同(除了要添加的轴)
  • axis:默认为 None。当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时候,分别为0和1的时候。当axis有定义的时候,分别为0和1的时候(列数要相同)。当axis为1时,数组是加在右边(行数要相同)。

复制代码

import numpy as np

a=np.array([[1,2,3],[4,5,6]])

print('第一个数组是:')

print(a)

print('\n')

 

print('向数组添加元素:')

print(np.append(a,[[7,8,9]]))

print('\n')

 

print('沿轴0添加元素:')

print(np.append(a,[[7,8,9]],axis=0))

print('\n')

 

print('沿轴1添加元素:')

print(np.append(a,[[5,5,5],[7,8,9]],axis=1))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[1 2 3]
 [4 5 6]]


向数组添加元素:
[1 2 3 4 5 6 7 8 9]


沿轴0添加元素:
[[1 2 3]
 [4 5 6]
 [7 8 9]]


沿轴1添加元素:
[[1 2 3 5 5 5]
 [4 5 6 7 8 9]]

复制代码

numpy.insert

numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。

如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。 此外,如果未提供轴,则输入数组会被展开。

numpy.insert(arr, obj, values, axis)

参数说明:

  • arr:输入数组
  • obj:在其之前插入值的索引
  • values:要插入的值
  • axis:沿着它插入的轴,如果未提供,则输入数组会被展开

复制代码

import numpy as np

a=np.array([[1,2],[3,4],[5,6]])

print('第一个数组是:')

print(a)

print('\n')

 

print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')

print(np.insert(a,3,[11,12]))

print ('\n')

 

print ('传递了 Axis 参数。 会广播值数组来配输入数组。')

print('沿轴0广播:')

print(np.insert(a,1,[11],axis=0))

print ('\n')

 

print('沿轴1广播:')

print(np.insert(a,1,[11],axis=1))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[1 2]
 [3 4]
 [5 6]]


未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 1  2  3 11 12  4  5  6]


传递了 Axis 参数。 会广播值数组来配输入数组。
沿轴0广播:
[[ 1  2]
 [11 11]
 [ 3  4]
 [ 5  6]]

(venv) E:\pythonwork>python numpy_test.py
第一个数组是:
[[1 2]
 [3 4]
 [5 6]]


未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 1  2  3 11 12  4  5  6]


传递了 Axis 参数。 会广播值数组来配输入数组。
沿轴0广播:
[[ 1  2]
 [11 11]
 [ 3  4]
 [ 5  6]]


沿轴1广播:
[[ 1 11  2]
 [ 3 11  4]
 [ 5 11  6]]

复制代码

numpy.delete

numpy.delete 函数返回从输入数组中删除指定子数组的新数组。 与 insert() 函数的情况一样,如果未提供轴参数,则输入数组将展开。

Numpy.delete(arr, obj, axis)

参数说明:

  • arr:输入数组
  • obj:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组
  • axis:沿着它删除给定子数组的轴,如果未提供,则输入数组会被展开

复制代码

import numpy as np

a=np.arange(12).reshape(3,4)

print('第一个数组是:')

print(a)

print('\n')

 

print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')

print(np.delete(a,5))

 

print('删除第二列:')

print(np.delete(a,1,axis=1))

 

print ('包含从数组中删除的替代值的切片:')
a = np.array([1,2,3,4,5,6,7,8,9,10])
print (np.delete(a, np.s_[::2]))

 

------------执行以上程序,返回的结果为------------

第一个数组是:
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]


未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 0  1  2  3  4  6  7  8  9 10 11]
删除第二列:
[[ 0  2  3]
 [ 4  6  7]
 [ 8 10 11]]
包含从数组中删除的替代值的切片:
[ 2  4  6  8 10]

复制代码

numpy.unique

numpy.unique 函数用于去除数组中的重复元素。

numpy.unique(arr, return_index, return_inverse, return_counts)

  • arr:输入数组,如果不是一维数组则会展开
  • return_index:如果为true,返回新列表元素在旧列表中的位置(下标),并以列表形式储
  • return_inverse:如果为true,返回旧列表元素在新列表中的位置(下标),并以列表形式储
  • return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数

复制代码

import numpy as np

a = np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9])

print('第一个数组:')
print(a)
print('\n')

print('第一个数组的去重值:')
u = np.unique(a)
print(u)
print('\n')

print('去重数组的索引数组:')
u, indices = np.unique(a, return_index=True)
print(indices)
print('\n')

print('我们可以看到每个和原数组下标对应的数值:')
print(a)
print('\n')

print('去重数组的下标:')
u, indices = np.unique(a, return_inverse=True)
print(u)
print('\n')

print('下标为:')
print(indices)
print('\n')

print('使用下标重构原数组:')
print(u[indices])
print('\n')

print('返回去重元素的重复数量:')
u, indices = np.unique(a, return_counts=True)
print(u)
print(indices)

------------执行以上程序,返回的结果为------------
第一个数组:
[5 2 6 2 7 5 6 8 2 9]


第一个数组的去重值:
[2 5 6 7 8 9]


去重数组的索引数组:
[1 0 2 4 7 9]


我们可以看到每个和原数组下标对应的数值:
[5 2 6 2 7 5 6 8 2 9]


去重数组的下标:
[2 5 6 7 8 9]


下标为:
[1 0 2 0 3 1 2 4 0 5]


使用下标重构原数组:
[5 2 6 2 7 5 6 8 2 9]


返回去重元素的重复数量:
[2 5 6 7 8 9]
[3 2 2 1 1 1]

复制代码

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值