Numpy 数组操作
Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:
修改数组形状
函数 | 描述 |
---|---|
reshape | 不改变数据的条件下修改形状 |
flat | 数组元素迭代器 |
flatten | 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 |
ravel | 返回展开数组 |
numpy.reshape
numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下: numpy.reshape(arr, newshape, order='C')
arr
:要修改形状的数组newshape
:整数或者整数数组,新的形状应当兼容原有形状- order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'k' -- 元素在内存中的出现顺序。
实例
import numpy as np
a=np.arange(8)
print('原始数组是:')
print(a)
print('\n')
b=np.reshape(a,(4,2))
print('修改后的数组是:')
print(b)
------------执行以上程序,返回的结果为------------
原始数组是:
[0 1 2 3 4 5 6 7]
修改后的数组是:
[[0 1]
[2 3]
[4 5]
[6 7]]
numpy.ndarray.flat
numpy.ndarray.flat 是一个数组元素迭代器,实例如下:
import numpy as np
a=np.arange(8).reshape(4,2)
print('原始数组是:')
for x in a:
print(x)
#对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器:
print('迭代后的数组是:')
for x in a.flat:
print(x)
------------执行以上程序,返回的结果为------------
原始数组是:
[0 1]
[2 3]
[4 5]
[6 7]
迭代后的数组是:
0
1
2
3
4
5
6
7
numpy.ndarray.flatten
numpy.ndarray.flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组,格式如下:
ndarray.flatten(order='C')
参数说明:
- order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。
import numpy as np
a=np.arange(8).reshape(4,2)
print('原始数组是:')
print(a)
print('\n')
print('展开的数组:')
print(a.flatten())
print('\n')
print('以F风格展开的数组:')
print(a.flatten(order='F'))
------------执行以上程序,返回的结果为------------
原始数组是:
[[0 1]
[2 3]
[4 5]
[6 7]]
展开的数组:
[0 1 2 3 4 5 6 7]
以F风格展开的数组:
[0 2 4 6 1 3 5 7]
numpy.ravel
numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图(view,有点类似 C/C++引用reference的意味),修改会影响原始数组。
该函数接收两个参数:
numpy.ravel(a, order='C')
参数说明:
- order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。
import numpy as np
a=np.arange(8).reshape(4,2)
print('原始数组:')
print(a)
print('\n')
print('使用ravel之后的数组')
print(a.ravel())
print('以F风格调用ravel函数之后')
print(a.ravel(order='F'))
------------执行以上程序,返回的结果为------------
原始数组:
[[0 1]
[2 3]
[4 5]
[6 7]]
使用ravel之后的数组
[0 1 2 3 4 5 6 7]
以F风格调用ravel函数之后
[0 2 4 6 1 3 5 7]
翻转数组
函数 | 描述 |
---|---|
transpose | 对换数组的维度 |
ndarray.T | 和 self.transpose() 相同 |
rollaxis | 向后滚动指定的轴 |
swapaxes | 对换数组的两个轴 |
numpy.transpose
numpy.transpose 函数用于对换数组的维度,格式如下:
numpy.transpose(arr, axes)
参数说明:
arr
:要操作的数组axes
:整数列表,对应维度,通常所有维度都会对换。
import numpy as np
a=np.arange(8).reshape(4,2)
print('原始数组:')
print(a)
print('\n')
print('对换数组:')
print(np.transpose(a))
------------执行以上程序,返回的结果为------------
原始数组:
[[0 1]
[2 3]
[4 5]
[6 7]]
对换数组:
[[0 2 4 6]
[1 3 5 7]]
numpy.ndarray.T 类似 numpy.transpose:
import numpy as np
a=np.arange(8).reshape(4,2)
print('原始数组:')
print(a)
print('\n')
print('转置数组:')
print(a.T)
------------执行以上程序,返回的结果为------------
原始数组:
[[0 1]
[2 3]
[4 5]
[6 7]]
转置数组:
[[0 2 4 6]
[1 3 5 7]]
numpy.rollaxis
numpy.rollaxis 函数向后滚动特定的轴到一个特定位置,格式如下:
numpy.rollaxis(arr, axis, start)
参数说明:
arr
:数组axis
:要向后滚动的轴,其它轴的相对位置不会改变start
:默认为零,表示完整的滚动。会滚动到特定位置。
import numpy as np
# 创建了三维的 ndarray
a = np.arange(8).reshape(2,2,2)
print ('原数组:')
print (a)
print ('\n')
# 将轴 2 滚动到轴 0(宽度到深度)
print ('调用 rollaxis 函数:')
print (np.rollaxis(a,2))
# 将轴 0 滚动到轴 1:(宽度到高度)
print ('\n')
print ('调用 rollaxis 函数:')
print (np.rollaxis(a,2,1))
------------执行以上程序,返回的结果为------------
原数组:
[[[0 1]
[2 3]]
[[4 5]
[6 7]]]
调用 rollaxis 函数:
[[[0 2]
[4 6]]
[[1 3]
[5 7]]]
调用 rollaxis 函数:
[[[0 2]
[1 3]]
[[4 6]
[5 7]]]
numpy.swapaxes
numpy.swapaxes 函数用于交换数组的两个轴,格式如下:
numpy.swapaxes(arr, axis1, axis2)
arr
:输入的数组axis1
:对应第一个轴的整数axis2
:对应第二个轴的整数
import numpy as np
# 创建了三维的 ndarray
a = np.arange(8).reshape(2,2,2)
print ('原数组:')
print (a)
print ('\n')
# 现在交换轴 0(深度方向)到轴 2(宽度方向)
print ('调用 swapaxes 函数后的数组:')
print (np.swapaxes(a, 2, 0))
------------执行以上程序,返回的结果为------------
原数组:
[[[0 1]
[2 3]]
[[4 5]
[6 7]]]
调用 swapaxes 函数后的数组:
[[[0 4]
[2 6]]
[[1 5]
[3 7]]]
修改数组维度
维度 | 描述 |
---|---|
broadcast | 产生模仿广播的对象 |
broadcast_to | 将数组广播到新形状 |
expand_dims | 扩展数组的形状 |
squeeze | 从数组的形状中删除一维条目 |
numpy.broadcast
numpy.broadcast 用于模仿广播的对象,它返回一个对象,该对象封装了将一个数组广播到另一个数组的结果。
该函数使用两个数组作为输入参数,如下实例:
import numpy as np
x = np.array([[1], [2], [3]])
y = np.array([4, 5, 6])
# 对 y 广播 x
b = np.broadcast(x,y)
# 它拥有 iterator 属性,基于自身组件的迭代器元组
print ('对 y 广播 x:')
r,c = b.iters
# Python3.x 为 next(context) ,Python2.x 为 context.next()
print (next(r), next(c))
print (next(r), next(c))
print ('\n')
# shape 属性返回广播对象的形状
print ('广播对象的形状:')
print (b.shape)
print ('\n')
# 手动使用 broadcast 将 x 与 y 相加
b = np.broadcast(x,y)
c = np.empty(b.shape)
print ('手动使用 broadcast 将 x 与 y 相加:')
print (c.shape)
print ('\n')
c.flat = [u + v for (u,v) in b]
print ('调用 flat 函数:')
print (c)
print ('\n')
# 获得了和 NumPy 内建的广播支持相同的结果
print ('x 与 y 的和:')
print (x + y)
------------执行以上程序,返回的结果为------------
对 y 广播 x:
1 4
1 5
广播对象的形状:
(3, 3)
手动使用 broadcast 将 x 与 y 相加:
(3, 3)
调用 flat 函数:
[[5. 6. 7.]
[6. 7. 8.]
[7. 8. 9.]]
x 与 y 的和:
[[5 6 7]
[6 7 8]
[7 8 9]]
numpy.broadcast_to
numpy.broadcast_to 函数将数组广播到新形状。它在原始数组上返回只读视图。 它通常不连续。 如果新形状不符合 NumPy 的广播规则,该函数可能会抛出ValueError。
numpy.broadcast_to(array, shape, subok)
实例
import numpy as np
a = np.arange(4).reshape(1,4)
print ('原数组:')
print (a)
print ('\n')
print ('调用 broadcast_to 函数之后:')
print (np.broadcast_to(a,(4,4)))
------------执行以上程序,返回的结果为------------
原数组:
[[0 1 2 3]]
调用 broadcast_to 函数之后:
[[0 1 2 3]
[0 1 2 3]
[0 1 2 3]
[0 1 2 3]]
numpy.expand_dims
numpy.expand_dims 函数通过在指定位置插入新的轴来扩展数组形状,函数格式如下:
numpy.expand_dims(arr, axis)
参数说明:
arr
:输入数组axis
:新轴插入的位置
import numpy as np
x = np.array(([1,2],[3,4]))
print ('数组 x:')
print (x)
print ('\n')
y = np.expand_dims(x, axis = 0)
print ('数组 y:')
print (y)
print ('\n')
print ('数组 x 和 y 的形状:')
print (x.shape, y.shape)
print ('\n')
# 在位置 1 插入轴
y = np.expand_dims(x, axis = 1)
print ('在位置 1 插入轴之后的数组 y:')
print (y)
print ('\n')
print ('x.ndim 和 y.ndim:')
print (x.ndim,y.ndim)
print ('\n')
print ('x.shape 和 y.shape:')
print (x.shape, y.shape)
------------执行以上程序,返回的结果为------------
数组 x:
[[1 2]
[3 4]] 数组 y:
[[[1 2]
[3 4]]]
数组 x 和 y 的形状:
(2, 2) (1, 2, 2)
在位置 1 插入轴之后的数组 y:
[[[1 2]]
[[3 4]]]
x.ndim 和 y.ndim:
2 3
x.shape 和 y.shape:
(2, 2) (2, 1, 2)
numpy.squeeze
numpy.squeeze 函数从给定数组的形状中删除一维的条目,函数格式如下:
numpy.squeeze(arr, axis)
实例
import numpy as np
x = np.arange(9).reshape(1,3,3)
print ('数组 x:')
print (x)
print ('\n')
y = np.squeeze(x)
print ('数组 y:')
print (y)
print ('\n')
print ('数组 x 和 y 的形状:')
print (x.shape, y.shape)
------------执行以上程序,返回的结果为------------
数组 x:
[[[0 1 2]
[3 4 5]
[6 7 8]]]
数组 y:
[[0 1 2]
[3 4 5]
[6 7 8]]
数组 x 和 y 的形状:
(1, 3, 3) (3, 3)
连接数组
函数 | 描述 |
---|---|
concatenate | 连接沿现有轴的数组序列 |
stack | 沿着新的轴加入一系列数组。 |
hstack | 水平堆叠序列中的数组(列方向) |
vstack | 竖直堆叠序列中的数组(行方向) |
numpy.concatenate
numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下:
numpy.concatenate((a1, a2, ...), axis)
参数说明:
a1, a2, ...
:相同类型的数组axis
:沿着它连接数组的轴,默认为 0
import numpy as np
a=np.array([[1,2],[3,4]])
print('第一个数组:')
print(a)
print('\n')
b=np.array([[5,6],[7,8]])
print('第二个数组是:')
print(b)
print('\n')
# 两个数组的维度相同
print('沿轴0连接两个数组:')
print(np.concatenate((a,b)))
print('沿轴1连接两个数组:')
print(np.concatenate((a,b),axis = 1))
------------执行以上程序,返回的结果为------------
第一个数组:
[[1 2]
[3 4]]
第二个数组是:
[[5 6]
[7 8]]
沿轴0连接两个数组:
[[1 2]
[3 4]
[5 6]
[7 8]]
沿轴1连接两个数组:
[[1 2 5 6]
[3 4 7 8]]
numpy.stack
numpy.stack 函数用于沿新轴连接数组序列,格式如下:
import numpy as np
a=np.array([[1,2],[3,4]])
print('第一个数组是:')
print(a)
print('\n')
b=np.array([[5,6],[7,8]])
print('第二个数组是:')
print(b)
print('\n')
print('沿0轴堆叠两个数组')
print(np.stack((a,b),0))
print('沿1轴堆叠两个数组:')
print(np.stack((a,b),1))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[1 2]
[3 4]]
第二个数组是:
[[5 6]
[7 8]]
沿0轴堆叠两个数组
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]
沿1轴堆叠两个数组:
[[[1 2]
[5 6]]
[[3 4]
[7 8]]]
numpy.hstack
numpy.hstack 是 numpy.stack 函数的变体,它通过水平堆叠来生成数组。
import numpy as np
a=np.array([[1,2],[3,4]])
print('第一个数组是:')
print(a)
print('\n')
b=np.array([[5,6],[7,8])
print('第二个数组是:')
print(b)
print('\n')
print('水平堆叠:')
print(np.hstack((a,b)))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[1 2]
[3 4]]
第二个数组是:
[[5 6]
[7 8]]
水平堆叠:
[[1 2 5 6]
[3 4 7 8]]
numpy.vstack
numpy.vstack 是 numpy.stack 函数的变体,它通过垂直堆叠来生成数组。
import numpy as np
a=np.array([[1,2],[3,4]])
print('第一个数组是:')
print(a)
print('\n')
b=np.array([[5,6],[7,8]])
print('第二个数组是:')
print(b)
print('\n')
print('垂直堆叠:')
print(np.vstack((a,b)))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[1 2]
[3 4]]
第二个数组是:
[[5 6]
[7 8]]
垂直堆叠:
[[1 2]
[3 4]
[5 6]
[7 8]]
分割数组
函数 | 数组及操作 |
---|---|
split | 将一个数组分割为多个子数组 |
hsplit | 将一个数组水平分割为多个子数组(按列) |
vsplit | 将一个数组垂直分割为多个子数组(按行) |
numpy.split
numpy.split 函数沿特定的轴将数组分割为子数组,格式如下:
numpy.split(ary, indices_or_sections, axis)
参数说明:
ary
:被分割的数组indices_or_sections
:果是一个整数,就用该数平均切分,如果是一个数组,为沿轴切分的位置(左开右闭)axis
:沿着哪个维度进行切向,默认为0,横向切分。为1时,纵向切分
import numpy as np
a=np.arange(9)
print('第一个数组是:')
print(a)
print('\n')
print('将数组分为3个大小相等的子数组:')
print(np.split(a,3))
print('将数组在一维数组中表明的位置处分割:')
print(np.split(a,[4,7]))
------------执行以上程序,返回的结果为------------
第一个数组是:
[0 1 2 3 4 5 6 7 8]
将数组分为3个大小相等的子数组:
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8])]
将数组在一维数组中表明的位置处分割:
[array([0, 1, 2, 3]), array([4, 5, 6]), array([7, 8])]
numpy.hsplit
numpy.hsplit 函数用于水平分割数组,通过指定要返回的相同形状的数组数量来拆分原数组。
import numpy as np
a=np.floor(10 * np.random.random((2,6)))
print('第一个数组是:')
print(a)
print('\n')
print('拆分后:')
print(np.hsplit(a,3))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[0. 5. 9. 5. 7. 2.]
[6. 0. 8. 4. 4. 0.]]
拆分后:
[array([[0., 5.],
[6., 0.]]), array([[9., 5.],
[8., 4.]]), array([[7., 2.],
[4., 0.]])]
numpy.vsplit
numpy.vsplit 沿着垂直轴分割,其分割方式与hsplit用法相同。
import numpy as np
a=np.arange(16).reshape(4,4)
print('第一个数组是:')
print(a)
print('\n')
print('竖直分割:')
print(np.vsplit(a,4))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
竖直分割:
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]]), array([[12, 13, 14, 15]])]
数组元素的添加与删除
函数 | 元素及描述 |
---|---|
resize | 返回指定形状的新数组 |
append | 将值添加到数组末尾 |
insert | 沿指定轴将值插入到指定下标之前 |
delete | 删掉某个轴的子数组,并返回删除后的新数组 |
unique | 查找数组内的唯一元素 |
numpy.resize
numpy.resize 函数返回指定大小的新数组。
如果新数组大小大于原始大小,则包含原始数组中的元素的副本。
numpy.resize(arr, shape)
参数说明:
arr
:要修改大小的数组shape
:返回数组的新形状
import numpy as np
a=np.array([[1,2,3],[4,5,6]])
print('第一个数组是:')
print(a)
print('\n')
print('第一个数组的形状:')
print(a.shape)
print('\n')
print('第二个数组是:')
b=np.resize(a,(3,2))
print(b)
print('\n')
print('第二个数组的形状是:')
print(b.shape)
print('\n')
# 要注意 a 的第一行在 b 中重复出现,因为尺寸变大了
print('修改第二个数组的形状:')
c=np.resize(b,(3,3))
print(c)
------------执行以上程序,返回的结果为------------
第一个数组是:
[[1 2 3]
[4 5 6]]
第一个数组的形状:
(2, 3)
第二个数组是:
[[1 2]
[3 4]
[5 6]]
第二个数组的形状是:
(3, 2)
修改第二个数组的形状:
[[1 2 3]
[4 5 6]
[1 2 3]]
numpy.append
numpy.append 函数在数组的末尾添加值。 追加操作会分配整个数组,并把原来的数组复制到新数组中。 此外,输入数组的维度必须匹配否则将生成ValueError。
append 函数返回的始终是一个一维数组。
numpy.append(arr, values, axis=None)
参数说明:
arr
:输入数组values
:要向arr
添加的值,需要和arr
形状相同(除了要添加的轴)axis
:默认为 None。当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时候,分别为0和1的时候。当axis有定义的时候,分别为0和1的时候(列数要相同)。当axis为1时,数组是加在右边(行数要相同)。
import numpy as np
a=np.array([[1,2,3],[4,5,6]])
print('第一个数组是:')
print(a)
print('\n')
print('向数组添加元素:')
print(np.append(a,[[7,8,9]]))
print('\n')
print('沿轴0添加元素:')
print(np.append(a,[[7,8,9]],axis=0))
print('\n')
print('沿轴1添加元素:')
print(np.append(a,[[5,5,5],[7,8,9]],axis=1))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[1 2 3]
[4 5 6]]
向数组添加元素:
[1 2 3 4 5 6 7 8 9]
沿轴0添加元素:
[[1 2 3]
[4 5 6]
[7 8 9]]
沿轴1添加元素:
[[1 2 3 5 5 5]
[4 5 6 7 8 9]]
numpy.insert
numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。
如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。 此外,如果未提供轴,则输入数组会被展开。
numpy.insert(arr, obj, values, axis)
参数说明:
arr
:输入数组obj
:在其之前插入值的索引values
:要插入的值axis
:沿着它插入的轴,如果未提供,则输入数组会被展开
import numpy as np
a=np.array([[1,2],[3,4],[5,6]])
print('第一个数组是:')
print(a)
print('\n')
print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')
print(np.insert(a,3,[11,12]))
print ('\n')
print ('传递了 Axis 参数。 会广播值数组来配输入数组。')
print('沿轴0广播:')
print(np.insert(a,1,[11],axis=0))
print ('\n')
print('沿轴1广播:')
print(np.insert(a,1,[11],axis=1))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[1 2]
[3 4]
[5 6]]
未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 1 2 3 11 12 4 5 6]
传递了 Axis 参数。 会广播值数组来配输入数组。
沿轴0广播:
[[ 1 2]
[11 11]
[ 3 4]
[ 5 6]]
(venv) E:\pythonwork>python numpy_test.py
第一个数组是:
[[1 2]
[3 4]
[5 6]]
未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 1 2 3 11 12 4 5 6]
传递了 Axis 参数。 会广播值数组来配输入数组。
沿轴0广播:
[[ 1 2]
[11 11]
[ 3 4]
[ 5 6]]
沿轴1广播:
[[ 1 11 2]
[ 3 11 4]
[ 5 11 6]]
numpy.delete
numpy.delete 函数返回从输入数组中删除指定子数组的新数组。 与 insert() 函数的情况一样,如果未提供轴参数,则输入数组将展开。
Numpy.delete(arr, obj, axis)
参数说明:
arr
:输入数组obj
:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组axis
:沿着它删除给定子数组的轴,如果未提供,则输入数组会被展开
import numpy as np
a=np.arange(12).reshape(3,4)
print('第一个数组是:')
print(a)
print('\n')
print ('未传递 Axis 参数。 在插入之前输入数组会被展开。')
print(np.delete(a,5))
print('删除第二列:')
print(np.delete(a,1,axis=1))
print ('包含从数组中删除的替代值的切片:')
a = np.array([1,2,3,4,5,6,7,8,9,10])
print (np.delete(a, np.s_[::2]))
------------执行以上程序,返回的结果为------------
第一个数组是:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 0 1 2 3 4 6 7 8 9 10 11]
删除第二列:
[[ 0 2 3]
[ 4 6 7]
[ 8 10 11]]
包含从数组中删除的替代值的切片:
[ 2 4 6 8 10]
numpy.unique
numpy.unique 函数用于去除数组中的重复元素。
numpy.unique(arr, return_index, return_inverse, return_counts)
arr
:输入数组,如果不是一维数组则会展开return_index
:如果为true
,返回新列表元素在旧列表中的位置(下标),并以列表形式储return_inverse
:如果为true
,返回旧列表元素在新列表中的位置(下标),并以列表形式储return_counts
:如果为true
,返回去重数组中的元素在原数组中的出现次数
import numpy as np
a = np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9])
print('第一个数组:')
print(a)
print('\n')
print('第一个数组的去重值:')
u = np.unique(a)
print(u)
print('\n')
print('去重数组的索引数组:')
u, indices = np.unique(a, return_index=True)
print(indices)
print('\n')
print('我们可以看到每个和原数组下标对应的数值:')
print(a)
print('\n')
print('去重数组的下标:')
u, indices = np.unique(a, return_inverse=True)
print(u)
print('\n')
print('下标为:')
print(indices)
print('\n')
print('使用下标重构原数组:')
print(u[indices])
print('\n')
print('返回去重元素的重复数量:')
u, indices = np.unique(a, return_counts=True)
print(u)
print(indices)
------------执行以上程序,返回的结果为------------
第一个数组:
[5 2 6 2 7 5 6 8 2 9]
第一个数组的去重值:
[2 5 6 7 8 9]
去重数组的索引数组:
[1 0 2 4 7 9]
我们可以看到每个和原数组下标对应的数值:
[5 2 6 2 7 5 6 8 2 9]
去重数组的下标:
[2 5 6 7 8 9]
下标为:
[1 0 2 0 3 1 2 4 0 5]
使用下标重构原数组:
[5 2 6 2 7 5 6 8 2 9]
返回去重元素的重复数量:
[2 5 6 7 8 9]
[3 2 2 1 1 1]