传送门
题目描述
分析
首先如果两个点相连,只有三种情况:左边部分重合,小区间是大区间的子区间,右边部分重合
然后很显然,第一种和第三种,每种最多只会出现一次,如果出现多次,这三个点之间会成环,不是一棵树
然后我们继续考虑第二种情况,小区间会不会还有点和他相连呢,必然不会,因为如果有点能和小区间相连,那么必然也能和大区间相连,形成了环
那么第一种和第三种能不能有点和他相连呢,这个是可以的,只要区间扩展的方向相反即可
所以这个问题转换成了,找一个主链,主链上任意一点至多再连接一个点,求最大子树大小,就转换成了毛毛虫问题了
贴上毛毛虫的题解
传送门
代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <cstring>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define _CRT_SECURE_NO_WARNINGS
#pragma GCC optimize("Ofast","unroll-loops","omit-frame-pointer","inline")
#pragma GCC option("arch=native","tune=native","no-zero-upper")
#pragma GCC target("avx2")
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
const int INF = 0x3f3f3f3f;
const int N = 3e5 + 10;
int h[N],e[N * 2],ne[N * 2],idx;
int f[N];
int n,m;
int ans;
void add(int x,int y){
ne[idx] = h[x],e[idx] = y,h[x] = idx++;
}
void dfs(int u,int fa){
int max1 = 0,max2 = 0;
int cnt = 0;
for(int i = h[u];~i;i = ne[i]){
int j = e[i];
cnt++;
if(j == fa) continue;
dfs(j,u);
f[u] = max(f[u],f[j]);
if(f[j] > max1) max2 = max1,max1 = f[j];
else if(f[j] > max2) max2 = f[j];
}
cnt--;
f[u] += (1 + max(0,cnt - 1));
ans = max(ans,f[u] + max2);
}
int main(){
int t;
scanf("%d",&t);
while(t--){
idx = 0;
ans = 0;
scanf("%d",&n);
for(int i = 1;i <= n;i++) h[i] = -1,f[i] = 0;
for(int i = 1;i < n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
dfs(1,-1);
printf("%d\n",max(ans,1));
}
return 0;
}
/**
* ┏┓ ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃ ┃
* ┃ ━ ┃ ++ + + +
* ████━████+
* ◥██◤ ◥██◤ +
* ┃ ┻ ┃
* ┃ ┃ + +
* ┗━┓ ┏━┛
* ┃ ┃ + + + +Code is far away from
* ┃ ┃ + bug with the animal protecting
* ┃ ┗━━━┓ 神兽保佑,代码无bug
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛ + + + +
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛+ + + +
*/