传送门
题目描述
一共有 n n n 面墙,初始有 a i a_i ai 个弓箭手在第 i i i 面墙的位置上。一个在 i i i 位置的弓箭手可以保护 ∣ i − j ∣ ≤ r |i - j| \leq r ∣i−j∣≤r 的所有墙 j j j 。
你现在可以增派 k k k 个弓箭手并且任意分配它们的位置。你需要最大化被数量最少的弓箭手保护的墙被弓箭手保护的数量。
n ≤ 5 × 1 0 5 , 0 ≤ r ≤ n , 0 ≤ k ≤ 1 0 18 , 0 ≤ a i ≤ 1 0 9 n \leq 5 \times 10^5, 0 \leq r \leq n, 0 \leq k \leq 10^{18} ,0 \leq a_i \leq 10^9 n≤5×105,0≤r≤n,0≤k≤1018,0≤ai≤109
分析
最大化最小值,首先想到的就是二分
我们去二分最终的答案,然后判断最后答案的可行性就可以了,需要注意的事如果某个位置不符合答案,需要在这个位置后面的d处安放一个弓箭手,因为这个位置前面已经满足条件了,不需要覆盖到
代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <cstring>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define _CRT_SECURE_NO_WARNINGS
#pragma GCC optimize("Ofast","unroll-loops","omit-frame-pointer","inline")
#pragma GCC option("arch=native","tune=native","no-zero-upper")
#pragma GCC target("avx2")
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,int> PII;
const int INF = 0x3f3f3f3f;
const int N = 4e5 + 10,M = N * 2;
int h[N],ne[M],e[M],idx;
ll w[M];
ll d[N];
bool st[N];
int n,m;
void add(int x,int y,ll z){
ne[idx] = h[x],e[idx] = y,w[idx] = z,h[x] = idx++;
}
void dij(){
d[0] = 0;
priority_queue<PII,vector<PII>,greater<PII> > Q;
Q.push(PII(0,0));
while(Q.size()){
PII p = Q.top();
Q.pop();
int t = p.second;
if(st[t]) continue;
st[t] = true;
for(int i = h[t];i != -1;i = ne[i]){
int j = e[i];
if(d[j] > d[t] + w[i]){
d[j] = d[t] + w[i];
Q.push(PII(d[j],j));
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i = 0;i <= n;i++) h[i] = -1,d[i] = 0x3f3f3f3f3f3f;
while(m--){
int x,y;
ll z;
scanf("%d%d%lld",&x,&y,&z);
add(x,y,2 * z),add(y,x,2 * z);
}
for(int i = 1;i <= n;i++){
ll z;
scanf("%lld",&z);
add(0,i,z);
}
dij();
for(int i = 1;i <= n;i++) printf("%lld ",d[i]);
return 0;
}
/**
* ┏┓ ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃ ┃
* ┃ ━ ┃ ++ + + +
* ████━████+
* ◥██◤ ◥██◤ +
* ┃ ┻ ┃
* ┃ ┃ + +
* ┗━┓ ┏━┛
* ┃ ┃ + + + +Code is far away from
* ┃ ┃ + bug with the animal protecting
* ┃ ┗━━━┓ 神兽保佑,代码无bug
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛ + + + +
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛+ + + +
*/