CodeForces 1199E :Matching vs Independent Set 思维构造

传送门

题目描述

在这里插入图片描述

分析

比较有趣的一个构造题
首先最后答案是一定存在的,没有答案不存在的情况
一条边连接两个点,如果不存在独立边集的话,说明只有不到 2 ∗ n 2 * n 2n个点收到了影响,也就是说剩下的点超过了 n n n,可以构成独立点集

代码

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e6 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
    char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
    while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
bool st[N];
int n,m;
VI ans;

void init(){
    for(int i = 1;i <= n * 3;i++) st[i] = false;
    ans.clear();
}

bool solve(){
    read(n),read(m);
    init();
    for(int i = 1;i <= m;i++){
        int x,y;
        read(x),read(y);
        if(!st[x] && !st[y]){
            ans.pb(i);
            st[x] = true,st[y] = true;
        }
    }
    if(ans.size() >= n) return true;
    ans.clear();
    for(int i = 1;i <= 3 * n;i++){
        if(!st[i]) ans.pb(i);
    }
    return false;
}

int main() {
    int T;
    read(T);
    while(T--){
        if(solve()) puts("Matching");
        else puts("IndSet");
        for(int i = 0;i < n;i++) printf("%d ",ans[i]);
        puts("");
    }
    return 0;
}

/**
*  ┏┓   ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃       ┃
* ┃   ━   ┃ ++ + + +
*  ████━████+
*  ◥██◤ ◥██◤ +
* ┃   ┻   ┃
* ┃       ┃ + +
* ┗━┓   ┏━┛
*   ┃   ┃ + + + +Code is far away from  
*   ┃   ┃ + bug with the animal protecting
*   ┃    ┗━━━┓ 神兽保佑,代码无bug 
*   ┃        ┣┓
*    ┃        ┏┛
*     ┗┓┓┏━┳┓┏┛ + + + +
*    ┃┫┫ ┃┫┫
*    ┗┻┛ ┗┻┛+ + + +
*/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值