CodeForces 1100E :Andrew and Taxi 二分 + 拓扑排序

传送门

题目描述

给定一个有向图,改变其中某些边的方向,它将成为一个有向无环图。
现在求一个改变边方向的方案,使得所选边边权的最大值最小。

分析

很巧妙的一道题
首先因为是求最大值的最小值,很容易想到二分,所以怎么去构造 c h e c k check check函数呢?
我们去二分 m i d mid mid,把大于 m i d mid mid的边加入图中,判断图中是否有环,如果有环,必然不符合条件,因为我无法去更改图中边的方向,如果不存在环,则必然存在解,因为还未加入图中的边我可以随意更改方向
然后我们求出这个图的拓扑序,枚举每一条可能会被修改的边,通过他们拓扑序的大小关系判断这条边是否需要进行修改

代码

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
	char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
	while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int h[N], e[N], ne[N], w[N], idx;
int n, m;
int in[N], num[N];
bool st[N], sv[N];
VI ans;

struct Edge {
	int u, v, w;
} edge[N];


void add(int x, int y, int z) {
	ne[idx] = h[x], e[idx] = y, w[idx] = z, h[x] = idx++;
}


bool dfs(int u, int li) {
	st[u] = 1, sv[u] = 1;
	for (int i = h[u]; ~i; i = ne[i]) {
		int y = e[i], z = w[i];
		if (z <= li) continue;
		if (sv[y] || !dfs(y, li)) return 0;
	}
	sv[u] = 0;
	return true;
}

inline bool check(int now) {
	memset(st, 0, sizeof(st));
	memset(sv, 0, sizeof(sv));
	for (int i = 1; i <= n; i++)
		if (!st[i] && !dfs(i, now)) return 0;
	return 1;
}

void topsort(int l) {
	queue<int> q;
	memset(h, -1, sizeof h);
	idx = 0;
	for (int i = 1; i <= m; i++) {
		if (edge[i].w <= l) continue;
		add(edge[i].u, edge[i].v, edge[i].w);
		in[edge[i].v]++;
	}
	int tot = 0;
	for (int i = 1; i <= n; i++) if (!in[i]) q.push(i);
	while (q.size()) {
		int t = q.front();
		q.pop();
		num[t] = ++tot;
		for (int i = h[t]; ~i; i = ne[i]) {
			int j = e[i];
			in[j]--;
			if (!in[j]) q.push(j);
		}
	}
	for (int i = 1; i <= n; i++) if (!num[i]) num[i] = ++tot;
	for (int i = 1; i <= m; i++) {
		int x = edge[i].u, y = edge[i].v, z = edge[i].w;
		if (z <= l && num[x] > num[y]) ans.pb(i);
	}
}

int main() {
	memset(h, -1, sizeof h);
	read(n), read(m);
	for (int i = 1; i <= m; i++) {
		read(edge[i].u), read(edge[i].v), read(edge[i].w);
		add(edge[i].u, edge[i].v, edge[i].w);
	}
	int l = 0, r = INF;
	while (l < r) {
		int mid = (l + r) >> 1;
		if (check(mid)) r = mid;
		else l = mid + 1;
	}
	topsort(l);
	printf("%d %d\n", l, (int)ans.size());
	for (int i = 0; i < ans.size(); i++) printf("%d ", ans[i]);
	return 0;
}

/**
*  ┏┓   ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃       ┃
* ┃   ━   ┃ ++ + + +
*  ████━████+
*  ◥██◤ ◥██◤ +
* ┃   ┻   ┃
* ┃       ┃ + +
* ┗━┓   ┏━┛
*   ┃   ┃ + + + +Code is far away from  
*   ┃   ┃ + bug with the animal protecting
*   ┃    ┗━━━┓ 神兽保佑,代码无bug 
*   ┃        ┣┓
*    ┃        ┏┛
*     ┗┓┓┏━┳┓┏┛ + + + +
*    ┃┫┫ ┃┫┫
*    ┗┻┛ ┗┻┛+ + + +
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值