CodeForces 1197E : Culture Code 最短路计数 + 思维

本文详细解析了一道关于最短路径的算法题,通过构造网络图,利用拓扑排序和最短路算法寻找满足条件的最小路径。作者首先将输入数据进行排序,然后构建图并应用特殊边权处理,最后通过spfa算法求解最短路并计算方案数。文章适合对图论和算法有一定了解的读者深入研究。
摘要由CSDN通过智能技术生成

传送门

题意

在这里插入图片描述

分析

这个题,太妙了,太妙了
首先我们去转化一下给的式子
i n i 1 + ( i n i 2 − o u t i 1 ) + ⋅ ⋅ ⋅ + ( i n i k − o u t i k − 1 ) in_{i1} + (in_{i2} - out_{i1}) + ··· + (in_{ik} - out_{ik - 1}) ini1+(ini2outi1)++(inikoutik1)
等价于
i n i k + ∑ p = 1 k − 1 ( i n i p − o u t i p ) in_{ik} + \sum\nolimits_{p = 1}^{k - 1}{(in_{ip} - out_{ip})} inik+p=1k1(inipoutip)
题目要求的是求这个的最小值,所以,等价于
∑ p = 1 k − 1 ( i n i p − o u t i p ) \sum\nolimits_{p = 1}^{k - 1}{(in_{ip} - out_{ip})} p=1k1(inipoutip)最小
我们把所有点按照 i n i in_{i} ini从小到大排序,设置点0,然后相邻两个点之间连边,权重为 i n i − i n i − 1 in_{i} - in{i - 1} iniini1,这样, 1 − i 1 - i 1i之间的的路径和就是 i n i − i n i − 1 + i n i − 1 − i n i − 2 . . . + i n 1 − i n 0 in_{i} - in_{i - 1} + in_{i -1} - in_{i - 2} ... + in_{1} - in_{0} iniini1+ini1ini2...+in1in0 ,最后等价于 i n i in_{i} ini,也就是 i n i k in_{ik} inik
那么后面那一坨我们怎么处理呢,我们可以把每个点 i i i后面第一个满足 i n j > o u t i in_{j} > out_{i} inj>outi的点找到,然后 i − j i - j ij之间连一条边,权值为 i n j − o u t i in_{j} - out_{i} injouti,这样, ∑ p = 1 k − 1 ( i n i p − o u t i p ) \sum\nolimits_{p = 1}^{k - 1}{(in_{ip} - out_{ip})} p=1k1(inipoutip)也处理出来了
剩下的就是跑最短路了,并且因为要求方案数,所以还要最短路计数
因为这张图内存在边权为0的边,所有 d i j k s t r a dijkstra dijkstra s p f a spfa spfa都无法处理这个问题,但因为是拓扑图,所以我们可以顺着推
最后需要注意的是,如果 i i i点的 o u t out out小于 n n n点的 i n in in的话,说明还可以套娃,说明当前答案不符合要求

代码

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int N = 2e5 + 10,M = N << 1;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
	char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
	while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
struct Node{
	int out,in;
	bool operator <(Node const &A) const{
		return in < A.in;
	}
}a[N];
int n;
int h[N],ne[M],e[M],w[M],idx;
ll d[N];
bool st[N];
ll f[N];

void add(int x,int y,int z){
	ne[idx] = h[x],e[idx] = y,w[idx] = z,h[x] = idx++;
}

int check(int x){
	int l = 1,r = n;
	while(l < r){
		int mid = (l + r) >> 1;
		if(a[mid].in >= x) r = mid;
		else l = mid + 1;
	}
	if(a[l].in >= x) return l;
	return -1;
}

void spfa(){
	memset(d,0x3f,sizeof d);
	d[0] = 0;
	f[0] = 1;
	for(int i = 0;i <= n;i++)
		for(int j = h[i];~j;j = ne[j]){
			int v = e[j];
			if(d[v] > d[i] + w[j]){
				d[v] = d[i] + w[j];
				f[v] = f[i];
			}
			else if(d[v] == d[i] + w[j]) f[v] = (f[v] + f[i]) % mod;
		}
}

int main() {
	memset(h,-1,sizeof h);
	read(n);
	for(int i = 1;i <= n;i++) read(a[i].out),read(a[i].in);
	sort(a + 1,a + 1 + n);
	for(int i = 0;i < n;i++) add(i,i + 1,a[i + 1].in - a[i].in);
	for(int i = 1;i <= n;i++){
		int p = check(a[i].out);
		if(p == -1) continue;
		add(i,p,a[p].in - a[i].out);
	}
	spfa();
	ll ans = 0,res = INF;
	for(int i = 1;i <= n;i++) 
		if(a[i].out > a[n].in) res = min(res,d[i]);
	for(int i = 1;i <= n;i++)
		if(a[i].out > a[n].in && res == d[i]) 
			ans = (ans + f[i]) % mod;
	dl(ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值