CodeForces 600E :Lomsat gelral dsu on tree + 线段树合并

传送门

题意

在这里插入图片描述

分析

这道题有两种做法,因为是树上静态统计,所以dsu on tree是肯定可以做的
还有一种做法是线段树合并,有时间补上

代码

dsu on tree

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10, M = N * 2;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
	char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
	while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int h[N], e[M], ne[M], idx;
int sz[N], son[N], cnt[N];
int n, Son, mx;
ll sum;
int a[N];
ll ans[N];

void add(int x, int y) {
	ne[idx] = h[x], e[idx] = y, h[x] = idx++;
}

void dfs(int u, int fa) {
	sz[u] = 1;
	for (int i = h[u]; ~i; i = ne[i]) {
		int j = e[i];
		if (j ==  fa) continue;
		dfs(j, u);
		sz[u] += sz[j];
		if (sz[son[u]] < sz[j]) son[u] = j;
	}
}

void cal(int u, int fa, int st) {
	if (st == 1) {
		cnt[a[u]]++;
		if(cnt[a[u]] > mx) mx = cnt[a[u]],sum = a[u];
		else if(cnt[a[u]] == mx) sum += a[u];
		for (int i = h[u]; ~i; i = ne[i]) {
			if (e[i] != Son && e[i] != fa)
				cal(e[i], u, st);
		}
	}
	else {
		cnt[a[u]]--;
		for (int i = h[u]; ~i; i = ne[i]) {
			if (e[i] != Son && e[i] != fa)
				cal(e[i], u, st);
		}
	}
}

void dsu(int u, int fa, bool st) {
	for (int i = h[u]; ~i; i = ne[i]) {
		int j = e[i];
		if (j == fa || j == son[u]) continue;
		dsu(j, u, 0);
	}
	if (son[u]) dsu(son[u], u, 1);
	Son = son[u];
	cal(u, fa, 1);
	Son = 0;
	ans[u] = sum;
	if (!st) cal(u, fa, -1),mx = sum = 0;
}

int main() {
	memset(h, -1, sizeof h);
	read(n);
	for (int i = 1; i <= n; i++) read(a[i]);
	for (int i = 1; i < n; i++) {
		int a, b;
		read(a), read(b);
		add(a, b), add(b, a);
	}
	dfs(1, 0);
	dsu(1, 0, 0);
	for (int i = 1; i <= n; i++) printf("%lld ", ans[i]);
	return 0;
}

线段树合并

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 1e5 + 10,M = N * 2;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
	char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
	while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
struct Node{
	int l,r;
	ll sum;
	int mx;
}tr[N * 40];
int h[N],e[M],ne[M],idx,num;
int a[N],n,root[N];
ll ans[N];

void add(int x,int y){
	ne[idx] = h[x],e[idx] = y,h[x] = idx++;
}

void push(int u){
	tr[u].mx = max(tr[tr[u].l].mx,tr[tr[u].r].mx);
	tr[u].sum = 0;
	if(tr[tr[u].l].mx == tr[u].mx) tr[u].sum += tr[tr[u].l].sum;
	if(tr[tr[u].r].mx == tr[u].mx) tr[u].sum += tr[tr[u].r].sum;
}

void modify(int &u,int l,int r,int x){
	if(!u) u = ++num;
	if(l == r) {
		tr[u].sum = l,tr[u].mx = 1;
		return;
	}
	int mid = (l + r) >> 1;
	if(x <= mid) modify(tr[u].l,l,mid,x);
	else modify(tr[u].r,mid + 1,r,x);
	push(u);
}

int merge(int u,int v,int l,int r){
	if(!u || !v) return u + v;
	if(l == r){
		tr[u].mx += tr[v].mx;
		tr[u].sum = l;
		return u;
	}
	int mid = (l + r) >> 1;
	tr[u].l = merge(tr[u].l,tr[v].l,l,mid);
	tr[u].r = merge(tr[u].r,tr[v].r,mid + 1,r);
	push(u);
	return u;
}


void dfs(int u,int fa){
	modify(root[u],1,n,a[u]);
	for(int i = h[u];~i;i = ne[i]){
		int j = e[i];
		if(j == fa) continue;
		dfs(j,u);
		root[u] = merge(root[u],root[j],1,n);
	}
	ans[u] = tr[root[u]].sum;
}

int main() {
	memset(h,-1,sizeof h);
	read(n);
	for(int i = 1;i <= n;i++) read(a[i]);
	for(int i = 1;i < n;i++){
		int a,b;
		read(a),read(b);
		add(a,b),add(b,a);
	}
	dfs(1,0);
	for(int i = 1;i <= n;i++) printf("%lld ",ans[i]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值